From *Semiconductor Physics and Devices: Basic Principles* (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

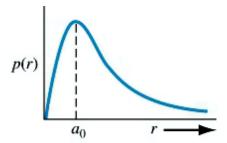
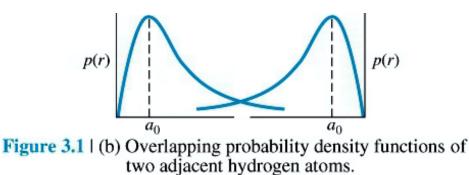
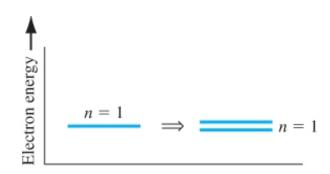




Figure 3.1 | (a) Probability density function of an isolated hydrogen atom.

- > Remember that the Bohr radius $a_0 = 0.529$ Å.
- Next look at what happens when two hydrogen atoms (and their electrons) are put with in ~8 Å of one another.

▶ Per Pauli exclusion principle, both electrons can not have the same quantum state \Rightarrow the E_1 energy state splits into two (very close) discrete energy states.

Figure 3.1 (c) The splitting of the n = 1 state.