From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

(a)

(b)

Figure 2.11 The radial probability density function for the one-electron atom in the (a) lowest energy state and (b) next-higher energy state.
(From Eisberg and Resnick [5].)

- Per (2.72) $|m|=\ell, \ell-1, \ldots, 0$. Therefore, $m=0$ when $\ell=0$.
- When $\ell=m=0$, the solutions for the probability density functions $|\Psi|^{2}$ are spherically symmetric, i.e., $|\Psi(r)|^{2}$.
- For $\left|\Psi_{100}(r)\right|^{2}$ (AKA, $1 s$ shell/state), note that the electron is most likely to be found near $r / a_{0}=1$ or $r=a_{0}=0.529 \AA$.
- For $\left|\Psi_{200}(r)\right|^{2}$ (AKA, $2 s$ shell/state), note that the electron is most likely to be found farther from the proton/nucleus at $5<r / a_{0}<6$.

