From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

Figure 2.11 | The radial probability density function for the one-electron atom in the (a) lowest energy state and (b) next-higher energy state. (From Eisberg and Resnick [5].)

- Per (2.72) $|m| = \ell, \ell-1, ..., 0$. Therefore, m = 0 when $\ell = 0$.
- When $\ell = m = 0$, the solutions for the probability density functions $|\Psi|^2$ are spherically symmetric, i.e., $|\Psi(r)|^2$.
- For $|\Psi_{100}(r)|^2$ (AKA, 1s shell/state), note that the electron is most likely to be found near $r/a_0 = 1$ or $r = a_0 = 0.529$ Å.
- For $|\Psi_{200}(r)|^2$ (AKA, 2s shell/state), note that the electron is most likely to be found farther from the proton/nucleus at $5 < r/a_0 < 6$.