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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.
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Figure 3.1 | (a) Probability density function of an isolated hydrogen atom.

» Remember that the Bohr radius ag = 0.529 A.

» Next look at what happens when two hydrogen atoms (and their electrons)
are put with in ~8 A of one another.
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Figure 3.1 | (b) Overlapping probability density functions of
two adjacent hydrogen atoms.

» Per Pauli exclusion principle, both electrons can not have the same
quantum state = the E; energy state splits into two (very close) discrete
energy states.

Electron energy —pm

Figure 3.11 (c) The splitting of the n = 1 state.
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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.
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Figure 3.2 | The splitting of an energy
state into a band of allowed energies.
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Figure 3.3 | Schematic showing the splitting of three energy states
into allowed bands of energies.

» Energy states split as atoms get close enough for probability density functions of
electrons to overlap, i.e., E3 first, then £, ...
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Figure 3.4 | (a) Schematic of an isolated silicon atom. (b) The splitting of the 3s and 3p states of silicon into the
allowed and forbidden energy bands.
(From Shockley [6].)

» Splitting occurs for electrons in outermost energy level (quantum number n = 3).
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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.
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Figure 3.5 | (a) Potential function of a single isolated
atom. (b) Overlapping potential functions of adjacent
atoms. (c) Net potential function of a one-dimensional
single crystal.

» Approximate as a series of periodic potential barriers, i.e., Kronig-Penney model.
Vix)
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Figure 3.6 | The one-dimensional periodic potential
function of the Kronig—Penney model.
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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.
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Figure 3.8 | A plot of (a) the first term in Equation (3.29), (b) the second term in Equation

(3.29), and (c) the entire [(«@a) function. The shaded areas show the allowed values of (aa)
corresponding to real values of k.
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Figure 3.9 | The E versus k diagram generated from
Figure 3.8. The allowed energy bands and forbidden
energy bandgaps are indicated.
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» Taking advantage of the fact that the cosine function is periodic, i.c.,
cos (ka) = cos (ka + 2nm) = cos (ka - 2nm),

we can shift parts of the plot in Figure 3.9 to create a plot of E versus k in
a reduced k-space. This is shown in Figures 3.10 and 3.11 and serves to
clearly show the allowed and forbidden energy bands.

A

| |
| [
[ [
- |
| |
| [
[ [

L

| |

| |

| |
T 0 w 2 iw
i a a

2

ke ——
Figure 3.10 | The E versus k diagram showing 27
displacements of several sections of allowed energy bands.

|
|
2 0

Reduced
k space

Figure 3.11 | The E versus k diagram
in the reduced-zone representation.

I
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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.
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Figure 3.12 | Two-dimensional
representation of the covalent bonding
in a semiconductor at T = 0 K.

» Now, let temperature increase so that K.E. = 7> 0

:::O O O == Conduction e

e band _ »
N Vel
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(a) (h)

Figure 3.13 | (a) Two-dimensional representation of the breaking of a covalent bond.
(b) Corresponding line representation of the energy band and the generation of a negative
and positive charge with the breaking of a covalent bond.

» For silicon, we might see
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Figure 3.4 | (a) Schematic of an isolated silicon atom. (b) The splitting of the 3s and 3p states of silicon into the
allowed and forbidden energy bands.
(From Shockley [6].)
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» Looking at energy E versus & bands at a) 0 K and b) > 0 K, we see that some
of the valence electrons in the highest energy states move to some of the
lowest energy conduction states when there is thermal energy.

» Note the distribution is shown as symmetric as we are assuming there is no
externally applied forces or fields.
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Figure 3.14 | The E versus k diagram of the conduction and valence bands of a semiconductor
at(a) T=0Kand (b) T=0K.
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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.
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Figure 3.11 | The E versus k diagram
in the reduced-zone representation.
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. [
Parabolic
approximation l

k=1 =
(a)

Figure 3.16 | (a) The conduction band in reduced k space,
and the parabolic approximation.

» Ec is the energy at the bottom of the conduction band (constant).

EE 362 Electronic, Magnetic, & Optical Properties of Materials, Dr. Montoya



ee362 Chap 03 notes.docx 21/42

zZ.L/ COnCC/f LDXC 7’115 /‘/@é

;0, wha? s e e 9 z/a/tnce éﬁn/
Wllé’m e bLace an a////&/ 1/0/74*73 i g'[/’/f/?

AS showo 17 Fio 3/7 the walence elechons
Nows That the Femy > of conld chenge
JocaTions T2 L/ The em/f)/ 5/07‘: [ef? by
electreas Going Yo fhe condachon bwse .
Even Thoush it i 4&7’?44,//7 ele cFrenS

Gl tal § 874@67‘.\4// [T Joolts /e &
(ﬂofbﬁ‘ue/ 64&:/96 ca//&/ 2 (L'”/‘/mdvmj‘

As ;éc?u/n P A Ej 3/5/ Joollins W Jhe

‘/“/5"!&6 ban// i tamt The @/&67(/‘on,f ﬂm‘f'
W&nf 7‘” ﬂt\.’» con&/hcf)wﬂ édnfg I’VL (/,90/65/

as ‘F The ew/?‘/ sfaf: are Yilled ot
/95/74‘./( &Aar?lf_

EE 362 Electronic, Magnetic, & Optical Properties of Materials, Dr. Montoya



ee362 Chap 03 notes.docx

22/42

From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.
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Figure 3.17 | Visualization of the movement of a hole in a semiconductor. m
» The electrons are moving right to left while the holes are moving left to right.
» Looking at the valence energy bands-
) E
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(a) (b)
Figure 3.18 | (a) Valence band with conventional electron-filled states and empty states.
(b) Concept of positive charges occupying the original empty states.
» Compare this with earlier energy versus & plots.
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Figure 3.11 | The E versus k diagram Figure 3.16 | (b) The valence band in reduced k space, and the parabolic

in the reduced-zone representation.

approximation.
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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A. Neamen, McGraw Hill, 2012,

ISBN 978-0-07-352958-5.
¢(E)

g(E) —
Figure 3.27 | The density of energy
states in the conduction band and the
density of energy states in the valence
band as a function of energy.

» Looking ahead to Chapter 4, Table 4.1 gives some typical values (@ 300 K?).

Table 4.1 | Effective density of states function and density of states effective mass values

N. (em ) N, (em ) mé fm, m [,
Silicon 2.8 x 10Y 1.04 > 10" 1.08 .56
Gallium arsenide 4.7 = 107 T.0 > 108 0.067 (.48
Germanium 1.04 = 10" 6.0 x 108 0.55 0.37

http://apachepersonal.miun.se/~gorthu/halvledare/Effective%20mass%20in%20semiconductors.htm

Effective mass and energy bandgap of Ge, Si and GaAs

Name Symbol | Germanium | Silicon AGrzleli:;gle
Smallest energy bandgap at 300 K E; (eV) 0.66 1.12 1.424
Effective mass for density of states calculations
Electrons e dos/Mo 0.56 1.08 0.067
Holes Mn" dos/ Mo 0.29 0.57/0.81! 0.47
Effective mass for conductivity calculations
Electrons Me” cond/Mo 0.12 0.26 0.067
Holes " cond/Mo 0.21 0.36/0.386' 0.34

"'Due to the fact that the heavy hole band does not have a spherical symmetry there is a discrepancy between the
actual effective mass for density of states and conductivity calculations (number on the right) and the calculated
value (number on the left) which is based on spherical constant-energy surfaces. The actual constant-energy
surfaces in the heavy hole band are "warped", resembling a cube with rounded corners and dented-in faces.
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From Semiconductor Physics and Devices: Basic Principles (4th Edition), Donald A.
Neamen, McGraw Hill, 2012, ISBN 978-0-07-352958-5.

T T: = T|

1.0

fr(E)

Figure 3.33 | The Fermi probability function versus energy
for different temperatures.

» Note that f» (E) always passes through 0.5 at £ = EF.

» Note that fr (E) spreads out as temperature increases.

From
https://lampx.tugraz.at/~hadley/psd/weblectures/Ef intrinsic/index.php#:~:text=The%20
Fermi%20energy%20is%20in,kBT%20~%200.025%20¢eV.
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Effective density of states m conduchon band (300 K) N 278 % 108 o3 1.04 » 102 m3 445 % 105 o3
Effective density of states m valence band (300 E) N, 9.84 x 10¥ m? 6.0x 108 m= 772 % 1024 3
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- - - m =0 06?
m Iy my =019 my =0082
Effective mass holes iy =016 e = 0.044 i = 0082
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Using MathCad
Example- Plot Fermi-Dirac probability function vs E (eV) at 300 K and 725 K for GaAs,
14 F
GaAs
1
0.8 eV e
= ( 0.7486 eV
0.6
s | 300 K 25K
02
o
100 200 300 400 EJ'JCIT lRlE:C' T0D aoo 200 1000
IB_eV = 8617333.10°° VK
From graph. the Fermi energies for GaAs @ 300 K & 725 K are
[EF_300 = 0.748§ eV [kB_eV-300 = 0.025852 | eV
EF_725 = 0. eV [kB_eV-725 = 0.062476 | &V
n = 0.100
Ep= —-13 f F300, = ! £ F725, = !
T100 - (Eq—EF 300 — s (E,—EF_725)
{4 o\ KB _EV-300 ) | 4 o\ KB_EV-T25 )
1 il
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Using MathCad-

Example- Plot Fermi-Dirac electron and hole probability functions vs E (eV) at 725 K
for GaAs. Also, plot Maxwell-Boltzmann approximation.
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