
MATLAB Primer

Kermit Sigmon
Department of Mathematics

University of Florida

Department of Mathematics � University of Florida � Gainesville, FL 32611
sigmon@math.ufl.edu � sigmon@ufpine.bitnet

Copyright c1989 by Kermit Sigmon

Introduction

MATLAB is an interactive, matrix-based system for scienti�c and engineering calcu-
lations. You can solve complex numerical problems without actually writing a program.
MATLAB is an outgrowth of the LINPACK and EISPACK projects, and has been evolving
for a number of years to the current system. The name MATLAB is an abbreviation for
MATrix LABoratory.

The purpose of these notes is to help you begin to use MATLAB. They can best be
used hands-on. You are encouraged to work at the computer as you read the notes and
freely experiment with examples.

You should liberally use the on-line help facility for more detailed information. After
entering MATLAB as described in section 1, the command help will display a list of
functions for which on-line help is available; the command help functionname will give
information about a speci�c function. The command help eig, for example, will give
information about the eigenvalue function eig. You can preview some of the features of
MATLAB by entering the command demo.

The scope and power of MATLAB go far beyond these notes. Eventually you will want
to consult the MATLAB User's Guide. Copies of the complete User's Guide are often
available for review at locations such as consulting desks, terminal rooms, computing labs,
and the reserve desk of the library. Consult your instructor or your local computing center
to learn where the User's Guides are located at your institution.

MATLAB is available for a number of environments: Sun/Apollo/VAXstation/HP
workstations, VAX, MicroVAX, Gould, PC and AT compatibles, 80386 computers, Apple
Macintosh, and several parallel machines. The information in these notes applies generally
to all of these environments, except as noted.

MATLAB is licensed by The MathWorks, Inc., Cochituate Place, 24 Prime Park Way,
Natick, MA 01760, (508)653-1415, Fax: (508)653-2997, Email: info@mathworks.com.

Copyright c1989 by Kermit Sigmon

(8-91)

i

Contents

1. Accessing MATLAB : 1

2. Entering matrices : 1

3. Matrix operations, array operations : 2

4. Statements, expressions, variables : 3

5. Matrix building functions : 3

6. For, while, if : 4

7. Scalar functions : 6

8. Vector functions : 6

9. Matrix functions : 7

10. Submatrices and colon notation : 7

11. M-�les : 8

12. Text strings, error messages, input : 10

13. Managing M-�les : 10

14. Comparing e�ciency of algorithms: ops and etime : 11

15. Output format : 11

16. Hard copy : 11

17. Graphics : 12

18. Reference : 14

ii

1. Accessing MATLAB.

On most systems, after logging in one can enter MATLAB with the system command
matlab and exit MATLAB with the command exit or quit. On a PC, for example, if
properly installed, one may enter MATLAB with the command:

C> matlab

and exit it with the command:

>> quit

On systems permitting multiple processes, such as a Unix system, you will �nd it
convenient, for reasons discussed in section 13, to keep both MATLAB and your local editor
active. If you are working on a workstation which runs processes in multiple windows, you
will want to keep MATLAB active in one window and your local editor active in another.
You should consult your instructor or your local computer center for details of the local
installation.

2. Entering matrices.

MATLAB works with essentially only one kind of object|a rectangular numerical
matrix with possibly complex entries; all variables represent matrices. In some situations,
1-by-1 matrices are interpreted as scalars and matrices with only one row or one column
are interpreted as vectors.

Matrices can be introduced into MATLAB in several di�erent ways:

� Entered by an explicit list of elements,

� Generated by built-in statements and functions,

� Created in M-�les (see section 13 below),

� Loaded from external data �les (see User's Guide).

For example, either of the statements

A = [1 2 3; 4 5 6; 7 8 9]

and

A = [

1 2 3

4 5 6

7 8 9]

creates the obvious 3-by-3 matrix and assigns it to a variable A. Try it. The elements
within a row of a matrix may be separated by commas as well as a blank.

When listing a number in exponential form (e.g. 2.34e-9), blank spaces must be
avoided. Listing entries of a large matrix is best done in an M-�le, where errors can
be easily edited away (see section 11).

The built-in functions rand, magic, and hilb, for example, provide an easy way to
create matrices with which to experiment. The command rand(n), resp. rand(m,n), will
create a n-by-n, resp. m-by-n, matrix with randomly generated entries; magic(n) will

1

create an integral n-by-n matrix which is a magic square (rows and columns have common
sum); hilb(n) will create the n-by-n Hilbert matrix, the king of ill-conditioned matrices
(m and n denote, of course, positive integers). Matrices can also be generated with a
for-loop (see section 6 below).

Individual matrix and vector entries can be referenced with indices inside parentheses
in the usual manner. For example, A(2; 3) denotes the entry in the second row, third
column of matrix A and x(3) denotes the third coordinate of vector x. Try it.

3. Matrix operations, array operations.

The following matrix operations are available in MATLAB:

+ addition
� subtraction
� multiplication
b power
0 transpose
n left division
/ right division

These matrix operations apply, of course, to scalars (1-by-1 matrices) as well. If the sizes
of the matrices are incompatible for the matrix operation, an error message will result,
except in the case of scalar-matrix operations in which case each entry of the matrix is
operated on by the scalar.

The \matrix division" operations deserve special comment. If A is an invertible square
matrix and b is a compatible column, resp. row, vector, then

x = Anb is the solution of A � x = b and, resp.,
x = b=A is the solution of x �A = b.

In left division, if A is square, then it is factored using Gaussian elimination and these
factors are used to solve A � x = b. If A is not square, it is factored using Householder
orthogonalization with column pivoting and the factors are used to solve the under- or
over- determined system in the least squares sense. Right division is de�ned in terms of
left division by b=A = (A0nb0)0.

Array operations. The matrix operations of addition and subtraction already op-
erate entry-wise but the other matrix operations given above do not|they are matrix

operations. It is important to observe that these other operations, �, b , n, and /, can
be made to operate entry-wise by preceding them by a period. For example, either
[1,2,3,4].*[1,2,3,4] or [1,2,3,4].b 2 will yield [1,4,9,16]. Try it. This is par-
ticularly useful when using Matlab graphics.

2

4. Statements, expressions, and variables.

MATLAB is an expression language; the expressions you type are interpreted and
evaluated. MATLAB statements are usually of the form

variable = expression, or simply
expression

Expressions are usually composed from operators, functions, and variable names. Eval-
uation of the expression produces a matrix, which is then displayed on the screen and
assigned to the variable for future use. If the variable name and = sign are omitted, a
variable ans (for answer) is automatically created to which the result is assigned.

A statement is normally terminated with the carriage return. However, a statement can
be continued to the next line with three or more periods followed by a carriage return. On
the other hand, several statements can be placed on a single line if separated by commas
or semicolons.

If the last character of a statement is a semicolon, the printing is suppressed, but the
assignment is carried out. This is essential in suppressing unwanted printing of intermediate
results.

MATLAB is case-sensitive in the names of commands, functions, and variables. For
example, solveUT is not the same as solveut.

The command who will list the variables currently in the workspace. A variable can be
cleared from the workspace with the command clear variablename. The command clear

alone will clear all nonpermanent variables.

When one logs out or exits MATLAB all variables are lost. However, invoking the com-
mand save before exiting causes all variables to be written to a disk�le named matlab.mat.
When one later reenters MATLAB, the command load will restore the workspace to its
former state.

A runaway display or computation can be stopped on most machines without leaving
MATLAB with CTRL-C (CTRL-BREAK on a PC).

The permanent variable eps (epsilon) gives the machine precision|about 10�16 on
most machines. It is useful in determining tolerences for convergence of iterative processes.

5. Matrix building functions.

Convenient matrix building functions are

eye identity matrix
zeros matrix of zeros
ones matrix of ones
diag see below
triu upper triangular part of a matrix
tril lower triangular part of a matrix
rand randomly generated matrix
hilb Hilbert matrix
magic magic square
toeplitz see help toeplitz

3

For example, zeros(m,n) produces an m-by-n matrix of zeros and zeros(n) produces an
n-by-n one; if A is a matrix, then zeros(A) produces a matrix of zeros of the same size
as A.

If x is a vector, diag(x) is the diagonal matrix with x down the diagonal; if A is a square
matrix, then diag(A) is a vector consisting of the diagonal of A. What is diag(diag(A))?
Try it.

Matrices can be built from blocks. For example, if A is a 3-by-3 matrix, then

B = [A, zeros(3,2); zeros(2,3), eye(2)]

will build a certain 5-by-5 matrix. Try it.

6. For, while, if.

In their basic forms, these MATLAB ow control statements operate like those in most
computer languages. For example, the statement

for i = 1:n, x(i)=ib 2, end

or

for i = 1:n

x(i) = ib 2

end

will produce a certain n-vector and the statement

for i = n:-1:1, x(i)=ib 2, end

will produce the same vector in reverse order. The statements

for i = 1:m

for j = 1:n

H(i, j) = 1/(i+j-1);

end

end

H

will produce and print to the screen them-by-n hilbert matrix. The semicolon on the inner
statement suppresses printing of unwanted intermediate results while the last H displays
the �nal result.

The general form of a while loop is

while relation

statements

end

The statements will be repeatedly executed as long as the relation remains true. For exam-
ple, for a given number a, the following will compute and display the smallest nonnegative
integer n such that 2n � a:

4

n = 0;

while 2b n < a

n = n + 1;

end

n

The general form of an if statement is illustrated by

if n < 0

x(n) = 0;

elseif rem(n,2) == 0

x(n) = 2;

else

x(n) = 1;

end

In two-way branching the elseif portion would, of course, be omitted.

The relational operators in MATLAB are

< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
�= not equal.

Note that \=" is used in an assignment statement while \==" is used in a relation.
Relations may be connected or quanti�ed by the logical operators

& and
j or
� not.

When applied to scalars, a relation is actually the scalar 1 or 0 depending on whether
the relation is true or false. Try 3 < 5, 3 > 5, 3 == 5, and 3 == 3. When applied
to matrices of the same size, a relation is a matrix of 0's and 1's giving the value of the
relation between corresponding entries. Try a = rand(5), b = triu(a), a == b.

A relation between matrices is interpreted by while and if to be true if each entry of
the relation matrix is nonzero. Hence, if you wish to execute statement when matrices A
and B are equal you could type

if A == B

statement

end

but if you wish to execute statement when A and B are not equal, you would type

if any(any(A �= B))

statement

end

5

or, more simply,

if A == B else

statement

end

Note that the seemingly obvious

if A �= B, statement, end

will not give what is intended since statement would execute only if each of the correspond-
ing entries of A and B di�er. The functions any and all can be creatively used to reduce
matrix relations to vectors or scalars. Two any's are required above since any is a vector
operator (see section 8).

The for statement permits any matrix to be used instead of 1:n. See the User's Guide
for details of how this feature expands the power of the for statement.

7. Scalar functions.

Certain MATLAB functions operate essentially on scalars, but operate element-wise
when applied to a matrix. The most common such functions are

sin asin exp abs round
cos acos log (natural log) sqrt oor
tan atan rem (remainder) sign ceil

8. Vector functions.

Other MATLAB functions operate essentially on a vector (row or column), but act
on an m-by-n matrix (m � 2) in a column-by-column fashion to produce a row vector
containing the results of each column. A few of these functions are

max sum median any
min prod mean all
sort std

For example, the maximum entry in a matrix A is given by max(max(A)) rather than
max(A). Try it.

6

9. Matrix functions.

Much of MATLAB's power comes from its matrix functions. The most useful ones are

eig eigenvalues and eigenvectors
chol cholesky factorization
svd singular value decomposition
inv inverse
lu LU factorization
qr QR factorization
hess hessenberg form
schur schur decomposition
rref reduced row echelon form
expm matrix exponential
sqrtm matrix square root
poly characteristic polynomial
det determinant
size size
norm 1-norm, 2-norm, F-norm, 1-norm
cond condition number in the 2-norm
rank rank

MATLAB functions may have single or multiple output arguments. For example,

y = eig(A), or simply eig(A)

produces a column vector containing the eigenvalues of A while

[U,D] = eig(A)

produces a matrix U whose columns are the eigenvectors of A and a diagonal matrix D
with the eigenvalues of A on its diagonal. Try it.

10. Submatrices and colon notation.

Vectors and submatrices are often used in MATLAB to achieve fairly complex data
manipulation e�ects. \Colon notation" (which is used both to generate vectors and refer-
ence submatrices) and subscripting by vectors are keys to e�cient manipulation of these
objects. Creative use of these features permits one to minimize the use of loops (which
slows MATLAB) and to make code simple and readable. Special e�ort should be made to

become familiar with them.

The expression 1:5 (met earlier in for statements) is actually the row vector [1 2 3

4 5]. The numbers need not be integers nor the increment one. For example,

0.2:0.2:1.2

gives [0.2 0.4 0.6 0.8 1.0 1.2], and

5:-1:1 gives [5 4 3 2 1].

The following statements will, for example, generate a table of sines. Try it.

x = [0.0:0.1:2.0]0;

y = sin(x);

[x y]

7

Note that since sin operates entry-wise, it produces a vector y from the vector x.

The colon notation can be used to access submatrices of a matrix. For example,

A(1:4,3) is the column vector consisting of the �rst four entries of the third column
of A.

A colon by itself denotes an entire row or column:

A(:,3) is the third column of A, and A(1:4,:) is the �rst four rows.

Arbitrary integral vectors can be used as subscripts:

A(:,[2 4]) contains as columns, columns 2 and 4 of A.

Such subscripting can be used on both sides of an assignment statement:

A(:,[2 4 5]) = B(:,1:3) replaces columns 2,4,5 of A with the �rst three columns
of B. Note that the entire altered matrix A is printed and assigned. Try it.

Columns 2 and 4 of A can be multiplied on the right by the 2-by-2 matrix [1 2;3 4]:

A(:,[2,4]) = A(:,[2,4])*[1 2;3 4]

Once again, the entire altered matrix is printed and assigned.

If x is an n-vector, what is the e�ect of the statement x = x(n:-1:1)? Try it.

To appreciate the usefulness of these features, compare these MATLAB statements
with a Pascal, FORTRAN, or C routine to e�ect the same.

11. M-�les.

MATLAB can execute a sequence of statements stored on disk�les. Such �les are called
\M-�les" because they must have the �le type of \.m" as the last part of their �lename.
Much of your work with MATLAB will be in creating and re�ning M-�les.

There are two types of M-�les: script �les and function �les. A script �le consists of
a sequence of normal MATLAB statements. If the �le has the �lename, say, rotate.m,
then the MATLAB command rotate will cause the statements in the �le to be executed.
Variables in a script �le are global and will change the value of variables of the same name
in the environment.

Script �les are often used to enter data into a large matrix; in such a �le, entry errors
can be easily edited out. If, for example, one enters in a disk�le data.m

A = [

1 2 3 4

5 6 7 8

];

then the MATLAB statement data will cause the assignment given in data.m to be carried
out.

An M-�le can reference other M-�les, including referencing itself recursively.

Function �les provide extensibility to MATLAB. You can create new functions spe-
ci�c to your problem which will then have the same status as other MATLAB functions.
Variables in a function �le are local.

8

We �rst illustrate with a simple example of a function �le:

function P = prodsqr(A,B)

% PRODSQR Product of the square of two matrices.

P = Ab 2*Bb 2;

Memory will be used more e�ciently if A is overwritten with the result:

function A = prodsqr(A,B)

% PRODSQR Product of the square of two matrices.

A = Ab 2*Bb 2;

This should be placed in a disk�le with �lename prodsqr.m (corresponding to the function
name). The �rst line declares the function name, input arguments, and output arguments;
without this line the �le would be a script �le. Then a MATLAB statement
z = prodsqr(x,y), for example, will cause the variables x and y to be passed to the
variables A and B in the function �le with the output result being passed out to the
variable z. Since variables in a function �le are local, their names are independent of those
in the environment.

A function may also have multiple output arguments. For example:

function [mean, stdev] = stat(x)

% STAT Mean and standard deviation

% For a vector x, stat(x) returns the

% mean and standard deviation of x.

% For a matrix x, stat(x) returns two row vectors containing,

% respectively, the mean and standard deviation of each column.

[m n] = size(x);

if m == 1

m = n; % handle case of a row vector

end

mean = sum(x)/m;

stdev = sqrt(sum(x.b 2)/m - mean.b 2)

Once this is placed in a disk�le stat.m, a MATLAB command [xm, xd] = stat(x), for
example, will assign the mean and standard deviation of the entries in the vector x to xm
and xd, respectively. Single assignments can also be made with a function having multiple
output arguments. For example, xm = stat(x) will assign the mean of x to xm.

This function illustrates some of the MATLAB features that can be used to produce
e�cient code. Note, for example, that x.b 2 is the matrix of squares of the entries of x,
that sum is a vector function (section 8), that sqrt is a scalar function (section 7), and
that the division in sum(x)/m is a matrix-scalar operation.

The % symbol indicates that the rest of the line is a comment; MATLAB will ignore
the rest of the line. However, the �rst few comment lines, which document the M-�le, are
available to the on-line help facility and will be displayed if, for example, help stat is
entered.

9

12. Text strings, error messages, input.

Text strings are entered into MATLAB surrounded by single quotes. For example,

s = 'This is a test'

assigns the given text string to the variable s.

Text strings can be displayed with the function disp. For example:

disp('this message is hereby displayed')

Error messages are best displayed with the function error

error('Sorry, the matrix must be symmetric')

since it causes execution to exit the M-�le.

In an M-�le the user can be prompted to interactively enter input data with the function
input. When, for example, the statement

iter = input('Enter the number of iterations: ')

is encountered, the prompt message is displayed and execution pauses while the user keys
in the input data. Upon pressing the return key, the data is assigned to the variable iter
and execution resumes.

13. Managing M-�les.

While using MATLAB one frequently wishes to create or edit an M-�le and then return
to MATLAB. One wishes to keep MATLAB active while editing a �le since otherwise all
variables would be lost upon exiting.

This can be easily done using the !-feature. If, while in MATLAB, you precede it with
an !, any system command|such as those for editing, printing, or copying a �le|can be
executed without exiting MATLAB. If, for example, the system command ed accesses your
editor, the MATLAB command

>> !ed rotate.m

will let you edit the �le named rotate.m using your local editor. Upon leaving the editor,
you will be returned to MATLAB just where you left it.

As noted in section 1, on systems permitting multiple processes, such as one running
Unix, it may be preferable to keep both MATLAB and your local editor active, keeping
one process suspended while working in the other. If these processes can be run in multiple
windows, as on a Sun workstation, you will want to keep MATLAB active in one window
and your editor active in another.

You may consult your instructor or your local computing center for details of the local
installation.

When in MATLAB, the command dir will list the contents of the current directory
while the command what will list only the M-�les in the directory. The MATLAB com-
mands delete and type can be used to delete a disk�le and print a �le to the screen,
respectively, and chdir can be used to change the working directory. While these com-
mands may reect system commands, they avoid the use of an !.

10

14. Comparing e�ciency of algorithms: ops and etime.

Two measures of the e�ciency of an algorithm are the number of oating point oper-
ations (ops) performed and the elapsed time.

The MATLAB function flops keeps a running total of the ops performed. The
command flops(0) will reset ops to 0. Hence, entering flops(0) immediately before
executing an algorithm and flops immediately after gives the op count for the algorithm.

The MATLAB function clock gives the current time accurate to a hundreth of a second
(see help clock). Given two such times t1 and t2, etime(t2,t1) gives the elapsed time
from t1 to t2. One can, for example, measure the time required to solve a given linear
system Ax = b using Gaussian elimination as follows:

time = clock; x = Anb; time = etime(clock,time)

You may wish to compare this time|and op count|with that for solving the system
using x = inv(A)*b;. Try it.

It should be noted that, on timesharing machines such as the VAX, etime is not a
reliable measure of the e�ciency of an algorithm since the rate of execution depends on
how busy the computer is at the time.

15. Output format.

While all computations in MATLAB are performed in double precision, the format of
the displayed output can be controlled by the following commands.

format short �xed point with 4 decimal places (the default)
format long �xed point with 14 decimal places
format short e scienti�c notation with 4 decimal places
format long e scienti�c notation with 15 decimal places

Once invoked, the chosen format remains in e�ect until changed.

The command format compact will suppress most blank lines allowing more informa-
tion to be placed on the screen or page. It is independent of the other format commands.

16. Hardcopy.

Hardcopy is most easily obtained with the diary command. The command

diary �lename

causes what appears subsequently on the screen (except graphics) to be written to the
named disk�le (if the �lename is omitted it will be written to a default �le named diary)
until one gives the command diary off; the command diary on will cause writing to the
�le to resume, etc. When �nished, you can edit the �le as desired and print it out on the
local system. The !-feature (see section 13) will permit you to print the �le without leaving
MATLAB.

11

17. Graphics.

MATLAB has excellent capability to produce planar plots and 3-D mesh surface plots.
To see some of these capabilities, enter the command plotdemo.

Not all terminals for a mainframe computer support graphics. If you experience dif-
�culty, check with your local system manager. If, however, you have terminal emulation
software for your PC which supports Tektronix 4010 graphics, you may be able to explore
this on the mainframe via dial-up.

Graphics are, however, supported on workstations such as the Sun and on a PC with
the appropriate graphics hardware and software.

The plot command creates linear x-y plots; if x and y are vectors of the same length,
the command plot(x,y) opens a graph window and draws an x-y plot of the elements of
x versus the elements of y. You can, for example, draw the graph of the sine function over
the interval -4 to 4 with the following commands:

x = -4:.01:4;

y = sin(x);

plot(x,y)

Try it. The vector x is a partition of the domain with meshsize 0.01 while y is a vector
giving the values of sine at the nodes of this partition (recall that sin operates entrywise
{ see section 7).

When in the graph screen, pressing any key will return you to the command screen
while the command shg (show graph) will then return you to the current graph screen.
When creating graphics on, for example, a Sun, you may wish to keep the graph window
exposed|but moved to the side|and the command window active.

As a second example, you can draw the graph of y = e�x
2

over the interval -1.5 to 1.5
as follows:

x = -1.5:.01:1.5;

y = exp(-x.b 2);

plot(x,y)

Note that one must precede b by a period to ensure that it operates entrywise (see section
3).

You are referred to the User's Guide or the help facility for such features as multiple
plots, titles, labels, gridlines, and manual scaling.

A hardcopy of the graph window can be obtained with the MATLAB command print:

>> print

12

Three dimensional mesh surface plots are drawn with the function mesh. The command
mesh(z) creates a three-dimensional perspective plot of the elements of the matrix z. The
mesh surface is de�ned by the z-coordinates of points above a rectangular grid in the x-y
plane. Try mesh(eye(10)).

To draw the graph of a function z = f(x; y) over a rectangle, one �rst de�nes vectors
xx and yy which give partitions of the sides of the rectangle. With the function meshdom

(mesh domain) one then creates a matrix x, each row of which equals xx and whose column
length is the length of yy, and similarly a matrix y, each column of which equals yy, as
follows:

[x,y] = meshdom(xx,yy);

One then computes a matrix z, obtained by evaluating f entrywise over the matrices x
and y, to which mesh can be applied.

You can, for example, draw the graph of z = e�x
2
�y

2

over the square [�2; 2]� [�2; 2]
as follows (try it):

xx = -2:.1:2;

yy = xx;

[x,y] = meshdom(xx,yy);

z = exp(-x.b 2 - y.b 2);

mesh(z)

One could, of course, replace the �rst three lines of the preceding with

[x,y] = meshdom(-2:.1:2, -2:.1:2);

You are referred to the User's Guide for further details regarding mesh.

13

18. Reference.

There are many MATLAB features which cannot be included in these introductory
notes. Listed below are some of the MATLAB functions and operators available, grouped
by subject area1. Use the on-line help facility or consult the User's Guide for more detailed
information on the functions.

There are many functions beyond these. There exist, in particular, several \toolboxes"
of functions for speci�c areas; included among such are signal processing, control theory,
dynamical systems(system identi�cation), and chemometrics2. These can be explored via
the command help.

General

help help facility

demo run demonstrations

who list variables in memory

what list M-�les on disk

size row and column dimensions

length vector length

clear clear workspace

computer type of computer

^C local abort

exit exit MATLAB

quit same as exit

Matrix Operators Array Operators

+ addition + addition

� subtraction � subtraction

� multiplication .� multiplication

/ right division ./ right division

n left division .n left division

b power .b power

' conjugate transpose .' transpose

Relational and Logical Operators

< less than & and

<= less than or equal j or

> greater than � not

>= greater than or equal

== equal

�= not equal

1 Source: MATLAB User's Guide, version 3.5
2 The toolboxes, which are optional, may not be installed on your system.

14

Special Characters

= assignment statement

[used to form vectors and matrices

] see [

(arithmetic expression precedence

) see (

. decimal point

... continue statement to next line

, separate subscripts and function arguments

; end rows, suppress printing

% comments

: subscripting, vector generation

! execute operating system command

Special Values

ans answer when expression not assigned

eps oating point precision

pi �
i, j

p�1
inf 1
NaN Not-a-Number

clock wall clock

date date

ops oating point operation count

nargin number of function input arguments

nargout number of function output arguments

Disk Files

chdir change current directory

delete delete �le

diary diary of the session

dir directory of �les on disk

load load variables from �le

save save variables to �le

type list function or �le

what show M-�les on disk

fprintf write to a �le

pack compact memory via save

15

Special Matrices

compan companion

diag diagonal

eye identity

gallery esoteric

hadamard Hadamard

hankel Hankel

hilb Hilbert

invhilb inverse Hilbert

linspace linearly spaced vectors

logspace logarithmically spaced vectors

magic magic square

meshdom domain for mesh points

ones constant

rand random elements

toeplitz Toeplitz

vander Vandermonde

zeros zero

Matrix Manipulation

rot90 rotation

iplr ip matrix left-to-right

ipud ip matrix up-to-down

diag diagonal matrices

tril lower triangular part

triu upper triangular part

reshape reshape

.' transpose

: convert matrix to single column; A(:)

Relational and Logical Functions

any logical conditions

all logical conditions

�nd �nd array indices of logical values

isnan detect NaNs

�nite detect in�nities

isempty detect empty matrices

isstr detect string variables

strcomp compare string variables

16

Control Flow

if conditionally execute statements

elseif used with if

else used with if

end terminate if, for, while

for repeat statements a number of times

while do while

break break out of for and while loops

return return from functions

pause pause until key pressed

Programming and M-Files

input get numbers from keyboard

keyboard call keyboard as M-�le

error display error message

function de�ne function

eval interpret text in variables

feval evaluate function given by string

echo enable command echoing

exist check if variables exist

casesen set case sensitivity

global de�ne global variables

startup startup M-�le

getenv get environment string

menu select item from menu

etime elapsed time

Text and Strings

abs convert string to ASCII values

eval evaluate text macro

num2str convert number to string

int2str convert integer to string

setstr set ag indicating matrix is a string

sprintf convert number to string

isstr detect string variables

strcomp compare string variables

hex2num convert hex string to number

17

Command Window

clc clear command screen

home move cursor home

format set output display format

disp display matrix or text

fprintf print formatted number

echo enable command echoing

Graph Paper

plot linear X-Y plot

loglog loglog X-Y plot

semilogx semi-log X-Y plot

semilogy semi-log X-Y plot

polar polar plot

mesh 3-dimensional mesh surface

contour contour plot

meshdom domain for mesh plots

bar bar charts

stairs stairstep graph

errorbar add error bars

Graph Annotation

title plot title

xlabel x-axis label

ylabel y-axis label

grid draw grid lines

text arbitrarily position text

gtext mouse-positioned text

ginput graphics input

Graph Window Control

axis manual axis scaling

hold hold plot on screen

shg show graph window

clg clear graph window

subplot split graph window

Graph Window Hardcopy

print send graph to printer

prtsc screen dump

meta graphics meta�le

18

Elementary Math Functions

abs absolute value or complex magnitude

angle phase angle

sqrt square root

real real part

imag imaginary part

conj complex conjugate

round round to nearest integer

�x round toward zero

oor round toward �1
ceil round toward1
sign signum function

rem remainder

exp exponential base e

log natural logarithm

log10 log base 10

Trigonometric Functions

sin sine

cos cosine

tan tangent

asin arcsine

acos arccosine

atan arctangent

atan2 four quadrant arctangent

sinh hyperbolic sine

cosh hyperbolic cosine

tanh hyperbolic tangent

asinh hyperbolic arcsine

acosh hyperbolic arccosine

atanh hyperbolic arctangent

Special Functions

bessel bessel function

gamma gamma function

rat rational approximation

erf error function

inverf inverse error function

ellipk complete elliptic integral of �rst kind

ellipj Jacobian elliptic integral

19

Decompositions and Factorizations

balance balanced form

backsub backsubstitution

cdf2rdf convert complex-diagonal to real-diagonal

chol Cholesky factorization

eig eigenvalues and eigenvectors

hess Hessenberg form

inv inverse

lu factors from Gaussian elimination

nnls nonnegative least squares

null null space

orth orthogonalization

pinv pseudoinverse

qr orthogonal-triangular decomposition

qz QZ algorithm

rref reduced row echelon form

schur Schur decomposition

svd singular value decomposition

Matrix Conditioning

cond condition number in 2-norm

norm 1-norm,2-norm,F-norm,1-norm

rank rank

rcond condition estimate (reciprocal)

Elementary Matrix Functions

expm matrix exponential

logm matrix logarithm

sqrtm matrix square root

funm arbitrary matrix function

poly characteristic polynomial

det determinant

trace trace

kron Kronecker tensor product

20

Polynomials

poly characteristic polynomial

roots polynomial roots|companion matrix method

roots1 polynomial roots|Laguerre's method

polyval polynomial evaluation

polyvalm matrix polynomial evaluation

conv multiplication

deconv division

residue partial-fraction expansion

poly�t polynomial curve �tting

Column-wise Data Analysis

max maximum value

min minimum value

mean mean value

median median value

std standard deviation

sort sorting

sum sum of elements

prod product of elements

cumsum cumulative sum of elements

cumprod cumulative product of elements

di� approximate derivatives

hist histograms

corrcoef correlation coe�cients

cov covariance matrix

cplxpair reorder into complex pairs

Signal Processing

abs complex magnitude

angle phase angle

conv convolution

corrcoef correlation coe�cients

cov covariance

deconv deconvolution

�t radix-2 fast Fourier transform

�t2 two-dimensional FFT

i�t inverse fast Fourier transform

i�t2 inverse 2-D FFT

�tshift FFT rearrangement

21

Interpolation

spline cubic spline

table1 1-D table look-up

table2 2-D table look-up

Differential Equation Solution

ode23 2nd/3rd order Runge-Kutta method

ode45 4th/5th order Runge-Kutta-Fehlberg method

Nonlinear Equations and Optimization

fmin minimum of a function of one variable

fmins minimum of a multivariable function

fsolve solution of a system of nonlinear equations

(zeros of a multivariable function)

fzero zero of a function of one variable

22

