MATLAB Tutorial

Thistutorid is available as a supplement to the textbook Fundamentals of Sgnals and Systems Using

the Web and Matlab, 3¢ edition by Edward Kamen and Bonnie Heck, published by Prentice Hall.
The tutoria covers basc MATLAB commands that are used in introductory sgnds and systems
andyss. It ismeant to serve asaquick way to leern MATLAB and a quick reference to the commands
that are used in this textbook. For more detailed information, the reader should consult the dfiad
MATLAB documentation. An easy way to learn MATLAB isto St down a a computer and follow
aong with the examples given in this tutorid and the examples given in the textbook.

The tutorid is designed for students using ether the professona verson of MATLAB (ver. 7.01) with
the Control Systems Toolbox (ver. 6.1), the Signa Processing Toolbox (ver. 6.2.1), and the Symboalic
Math Toolbox (ver. 3.1) or usng the Student Edition of MATLAB (ver. 7.0).

The topics covered in thistutorid are:

1. MATLAB Basics 2
A. Definition of Variables 2
B. Definition of Matrices 4
C. General Information 6
D. M -files 6
2. Fourier Analysis 9
3. Continuous Time System Analysis 11
A. Transfer Function Representation 11
B. Time Smulations 15
C. Frequency Response Plots 17
D. Analog Filter Design 18
E. Control Design 19
F. State Space Representation 20
4. Discrete-Time System Analysis 22
A. Convolution 22
B. Transfer Function Representation 22
C. Time Smulations 23
D. Frequency Response Plots 25
E. Digital Filter Design 25
F. Digital Control Design 27
G. State Space Representation 29
5. Plotting 30
6. Loading and Saving Data 32



1. MATLAB Basics

MATLAB is gtarted by clicking the mouse on the gppropriate icon and is ended by typing exi t or by
using the menu option. After eech MATLAB command, the "return” or "enter” key must be depressed.

A. Definition of Variables

Variables are assigned numerica values by typing the expression directly, for example, typing

a = 1+2

yieds a
3

The answer will not be displayed when a semicolon is put a the end of an expression, for example type
a = 1+2;.

MATLAB utilizes the following arithmetic operators.

+ addition

- subtraction

* multiplication

/ divison

A power operator
' trangpose

A variable can be assgned usng aformula that utilizes these operators and either numbers or previoudy
defined variables. For example, snce a was defined previoudy, the following expression isvdid

b = 2*a;
To determine the value of a previoudy defined quantity, type the quantity by itsdf:
b

yidds b =
6

If your expression does not fit on one line, use an dlipss (three or more periods at the end of the line)
and continue on the next line.

C = 1+2+3+. ..
5+6+7,



There are severd predefined variables which can be used a any time, in the same manner as user-
defined varidbles

i sort(-1)
j sort(-1)
pi 3.1416...
For example,
y= 2" (1+4%])
yieds y=

2. 0000 + 8.0000i

There are dso a number of predefined functions that can be used when defining a variable. Some
common functions that are used in thistext are:

abs magnitude of a number (absolute value for real numbers)
angl e angle of acomplex number, in radians

cos cosine function, assumes argumernt isin radians

sin gne function, assumes argument isin radians

exp exponentia function

For example, with 'y defined as above,

c = abs(y)
yieds c =
8. 2462
c = angle(y)
yidds c =
1.3258

With a=3 asdefined previoudy,

c = cos(a)
yieds c =
-0. 9900
c = exp(a)
yidds c =
20. 0855



Notethat exp can be used on complex numbers. For example, with y = 2+8i asdefined above,

c = exp(y)
yidds c =
-1.0751 + 7.3104i

which can be verified by usng Euler's formula
¢ = €°cos(8) + je’sn(8)

B. Definition of Matrices

MATLAB is based on matrix and vector algebra; even scalars are treated as 1x1 matrices. Therefore,
vector and matrix operations are as Smple as common caculaor operatiors.

Vectors can be defined in two ways. The first method is used for arbitrary elements:
v =[13517],;

creates a 1x4 vector with dements 1, 3, 5 and 7. Note that commas could have been used in place of
spaces to separate the elements. Additiona e ements can be added to the vector:

v(5) = 8;

yiddsthevector v. = [1 3 5 7 8]. Previoudy defined vectors can be used to define a new
vector. For example, with v defined above

a
b

[9 10];
[v a];

createsthevector b = [1 3 5 7 8 9 10].
The second method is used for creating vectors with equally spaced ements:
t = 0:.1:10;

creates a 1x101 vector with the lements 0, .1, .2, .3,...,10. Note that the middle number defines the
increment. If only two numbers are given, then the increment is set to a default of 1.

k = 0:10;

creates a 1x11 vector with the dements 0, 1, 2, ..., 10.



Matrices are defined by entering the eements row by row:

M=1[]12 4; 3 6 8];
creates the matrix

42 4
8 6 8l

There are anumber of specid matrices that can be defined:

M

null matrix: M=T];

nXm matrix of zeros: M = zeros(n, m;
nXm matrix of ones M = ones(n, m;
nxn identity matrix: M = eye(n);

A particular dement of amatrix can be assigned:
M1,2) =5;
places the number 5 in the first row, second column.
In this text, matrices are used only in Chapter 12; however, vectors are used throughout the text.

Operations and functions that were defined for scdars in the previous section can aso be used on
vectors and matrices. For example,

a=1[12 3];

b =145 6];

c =a+b
yidds ¢ =

579

Functions are gpplied dement by dement. For example,

t
X

0:10;
cos(2*t);

createsavector x with elements equal to cos(2t) fort =0, 1, 2, ..., 10.



Operations that need to be performed eement-by-eement can be accomplished by preceding the
operation by a".". For example, to obtain a vector x that contains the dements of x(t) = tcog(t) at
Specific points in time, you cannot Smply multiply the vector t with the vector cos(t) . Instead you
multiply their dements together:

t
X

0: 10;
t.*cos(t);

C. General Information

MATLAB iscase sendtive so "a" and "A" are two different names.
Comment statements are preceded by a"%.

Ontline hdp for MATLAB can be reached by typing hel p for the full menu or typing hel p
followed by a particular function name or M-file name. For example, hel p cos giveshdp onthe
cosine function.

The number of digits displayed is not related to the accuracy. To change the format of the display, type
format short e for scientific notation with 5 decimd places, f or mat | ong e for scientific
notation with 15 sgnificant decimd places and f or mat  bank for placing two significant digits to
the right of the decimdl.

The commands who and whos give the names of the varidbles that have been defined in the
workspace.

The command | engt h( x) returnsthe length of avector x and si ze( x) returnsthe dimenson
of thematrix X.

D. M -files

M-files are macros of MATLAB commands that are stored as ordinary text files with the extenson "m",
that is filenamem. An M-file can be ather afunction with input and output variables or it can bealist
of commands. All of the MATLAB examplesin thistextbook are contained in M-filesthat are avallable
from the textbook website.

The following describes the use of M-fileson a PC verson of MATLAB. MATLAB requires that the
M-file must be stored in a directory that is specified in the MATLAB path list. For example, congder
usng MATLAB onaPC with a user-defined M-file stored in adirectory caled \MATLAB\MFILES'.

Then to access that M-file, add that directory to the path by dicking “Fl€’ then dlicking “Set Path”
and fallowing directions.



The M-files associated with  this  textbook  should be  downloaded  from
www.ece.gatech.edu/users/192/book/M-fileshtml and copied to a user-specified directory. That
directory should be added to the path. The M-filesthat comewith MATLAB are dready in the path.

To create an M-file, click on “Fil€’ then click on “New” then click on “M-file’ and an editor screen will
aopear. Typein your MATLAB commands and then save the file to a directory that isin the path. The
M-file is run by typing the name of the M-file from the MATLAB command window (without the .m
extenson). For example, suppose an M-file named examplem is located in the path. Then typing
example from the command prompt runs that M-file

As example of an M-file that defines a function, cregte afile in your working directory named yplusx.m
that contains the following commands:

function z = yplusx(y, x)
zZ =y + X;

The following commands typed from within MATLAB demongrate how this M-fileis used:

X = 2
y =3
z = yplusx(y, x)

MATLAB Mfiles are mogt efficient when written in a way that utilizes matrix or vector operations.
Loops and if statements are available, but should be used sparingly since they are computationaly
inefficient. An example of the use of thecommand f or is

for k=1:10,
x(k) = cos(k);
end

This creates a 1x10 vector x containing the cosine of the positive integers from 1 to 10. This operation
is performed more efficiently with the commands

k
X

1.10;
cos(k);

which utilizes a function of a vector ingtead of a for loop. An i f satement can be used to define
conditiond gtatements. An exampleis

if(a <= 2),

b = 1;

el seif(a >=4)
b = 2

el se

b = 3;



end
The dlowable comparisons between expressons are >=, <=, <, >, ==, and ~=.
Severd of the M-files written for this textbook employ a user-defined variable which is defined with the
command i nput . For example, suppose that you want to run an M-file with different values of a
vaidble T. The following command line within the M-file defines the vaue

T = input(' I nput the value of T: ")

Whatever comment is between the quotation marks is displayed to the screen when the MHile is
running, and the user must enter an appropriate vaue.



2. Fourier Analysis

Commands covered: df t
i dft
fft
ifft
contfft

The df t command uses a graightforward method to compute the discrete Fourier transform. Define a
vector x and compute the DFT using the command

X = dft(x)

The fird dement in X corresponds to the vaue of X(0). The function df t is available from the
MathWorks ftp site and is defined in Figure C.2 of the textbook.

The command i dft uses a draightforward method to compute the inverse discrete Fourier
transform. Defineavector X and compute the IDFT using the command

x = idft(X)

The firg demert of the resulting vector x isx[0]. Thefunction i df t isavailable a the MathWorks
ftp dte and is defined in Figure C.3 of the textbook.

For amore efficient but less obvious program, the discrete Fourier transform can be computed using the
command f ft which performs a Fast Fourier Transform of a sequence of numbers. To compute the
FFT of asequence x[n] which is stored in the vector X, use the command

X = fft(x)

Used in this way, the command fft is interchangesble with the command dft. For more
computationa efficiency, the length of the vector x should be equa to an exponent of 2, that is 64,
128, 512, 1024, 2048, etc. The vector X can be padded with zeros to make it have an appropriate
length. MATLAB does this automatically by usng the following command where N is defined to be an
exponent of 2:

X = fft(x,N;

The longer the length of X, the finer the grid will be for the FFT. Due to awrap around effect, only the
first N/2 points of the FFT have any meaning.

The i f ft command computes the inverse Fourier transform:



X = ifft(X);

The FFT can be used to gpproximate the Fourier transform of a continuous-time sgnd as shown in
Section 6.6 of the textbook. A continuous-time signd x(t) is sampled with a period of T seconds, then
the DFT is computed for the sampled sgnd. The resulting amplitude must be scded and the
corresponding frequency determined. An M-file that approximates the Fourier Transform of a sampled
continuous-time sgnd is available from the ftp Ste and is given below:

function [X,w] = contfft(x,T);

[n,mM = size(x);
if n<m
X = X',
end
Xk = fft(x);
N = I engt h(x);
n = 0:N-1;
n(l) = eps;
X = (l-exp(-j*2*pi*n/N)) ./ (j*2*pi *n/ N T).*Xk.";
w = 2*pi*n/ N T,

The input is the sampled continuous-time signd x and the sampling time T.  The outputs are the Fourier
transform stored in the vector X and the corresponding frequency vector w.

10



3. Continuous Time System Analysis

A. Transfer Function Representation

Commands covered: tf
zpk
tf2zp
zp2tf
f eedback
par al | el
series

Transfer functions are created in MATLAB from the vectors that contain the coefficients of the
numerator and the denominator. Given a continuous-time transfer function

H(s) = —=

where B(s) = ys"+by.18"+...+b and A(S) = S'+ay.8 ... +a. Store the coefficients of B(s) and
A(9 inthe vectors num = [by bm: ... Dbl and den = [1 ay: ... ag]. Inthis
text, the names of the vectors are generdlly chosentobe numand den, but any other name could be
used. Then, type

sys = tf(num den).

Wheresys isthe desred name of the system
For example,

2st+3
S3+ 452 + 5

H(s) =

i defined by

num = [2 3];
den [1 4 0 5];
H=tf(num den);

Note that al coefficients must be included in the vector, even zero coefficients.

A trandfer function may aso be defined in terms of its zeros, poles and gain:

11



k(s z1)(s 22)..-(S zm)
(5 pP)(SP)---(SPp)

H(s) =
using the command
sys = zpk(z, p, k);

where z isavector of the zeros, p isavector containing the poles, and K isthe gain. For example,

H(S) = 2(s-4)(st+D)
(st+20)(st+10)(s-5)
z =[4 -1];
den = [-20 -10 5];
k = 2;
H = zpk(z,p,k);

To find the zeros, poles and gain of a transfer function from the vectors numand den which contain
the coefficients of the numerator and denominator polynomids, type

[z,p, k] = tf2zp(num den)

The zeros are stored in  z, the poles are stored in p, and the gain is sored in k. To find the
numerator and denominator polynomidsfrom z, p, ad k, type

[ num den] = zp2tf(z,p, k)
The overdl trandfer function of individud systems in pardle, series or feedback can be found usng
MATLAB. Consder block diagram reduction of the different configurations shown in Figure 1. The
transfer functions are stored in G and H.
To reduce the generd feedback system to asingle transfer function, Gy(s) = G(S)/(1+G(s)H(9)) type

G cl = feedback(G H);

Where G and H are user-defined transfer functions. The default is negative feedback. For a unity
feedback system, defineH as H=t f ( 1, 1) . To reduce the series system to asingle transfer function,

Gy(s) = G(9)H(9) type

G s = series(G H);
To reduce the parallel system to asingle transfer function, Gy(s) = G(s) + H(s) type

Gp = parallel (G H;

12



(Pardld isnot available in the Student Version.)

13



T » G(s) >

unity feedback

P G(S) >

His) [

feedback

—» G(s) +—» H(B) —»

series

—> G(s)

" H(s)

parallel

14



B. Time Smulations

Commands covered: resi due
step
i npul se
I sim

The andyticd method to find the time response of a system requires teking the inverse Laplace
Trandform of the output Y(s). MATLAB ades in this process by computing the partid fraction
expanson of Y(s) usng the command r esi due. Store the numerator and denominator coefficients
of Y(s in numand den, thentype

[r,p, k] = residue(num den)
The residues are stored in r, the corresponding poles are stored in p, and the gainis stored in k.

Once the partid fraction expangon is known, an andyticd expresson for y(t) can be computed by
hand.

A numerical method to find the response of a system to a particular input is available in MATLAB. To
plot the step response, of atransfer function defined as H, type

st ep(H)
To plot the impulse response, type

i npul se( H)
For the response to an arbitrary input, use the command | si m Create a vector t which contains
the time vaues in seconds a which you want MATLAB to cdculate the response. Typicdly, thisis
done by entering

t = a:b:c;

where a isthe garting time, b isthetimegepand c istheend time. For smooth plots, chooseb so
that there are a least 300 dementsin t (increase as necessary). Define the input x asafunction of
time, for example, arampisdefinedas x = t . Then plot the response by typing

I sim(H x,t);

To customize the commands, the time vector can be defined explicitly and the step response can be
saved to a vector. Simulating the response for five to Sx time congtants generdly is sufficient to show

15



the behavior of the system. For a Stable system, atime congtant is calculated as 1/Re(-p) where p isthe
pole that has the largest redl part (i.e, is closest to the origin).

For example, consider atransfer function defined by
2
H(s) = —
® st 2

The step responsey is calculated and plotted from the following commands:

num = 2; den = [1 2];

H = tf(num den),;

t = 0:3/300: 3; % for a time constant of 1/2
y = step(Ht);

plot(t,y)

For the impulse response, smply replace theword st ep with i npul se. For the response to an
arbitrary input sored in X, type

y = Isim(Hx,t);
plot(t,y)

16



C. Frequency Response Plots

Commands covered: freqgs
bode
| ogspace
| 0g10
sem | ogx
unwr ap

To compute the frequency response H(w) of a transfer function, store the numerator and denominator
of the trandfer function in the vectors numand den. Define avector w that contains the frequencies
for which H(w) is to be computed, for example w = a: b: ¢ wherea isthelowest frequency, c is
the highest frequency and b istheincrement in frequency. The command

Hw = fregqs(num den, w)
returns acomplex vector H that contains the value of H(w) for each frequency in w.

To draw aBode plot of atransfer function that has been stored in the system H, type

bode( H)
For example,

nunmH [2 1 3];
denH [1 2 4 0];
H=tf(nunmH denH);
bode(H);

where numH and denH hold the numerator and denominator of the transfer function H.
To customize the plat, first define the vector w that contains the frequencies at which the Bode plot will
be caculated. Since w should be defined on a log scae, the command | ogspace isused. For
example, to make a Bode plot ranging in frequencies from 10™ to 107, define w by

w = | ogspace(-1, 2);
The megnitude and phase information for the Bode plot can then be found be executing:

[ mg, phase] = bode(H, w);

Where the phase is in degrees. To plot the magnitude in decibels, convert nmag using the following
command:

17



magdb = 20*1 0og10( nag);

To plot the resuts on a semilog scale where the y-axis s linear and the x-axisislogarithmic, type
sem | ogx(w, magdb)

for the log-magnitude plot and type
sem | ogx(w, phase)

for the phase plot. The phase plot may contain jumps of +2p which may not be desired. To remove
these jumps, usethe command unwr ap prior to plotting the phase.

sem | ogx(w, unwr ap( phase))

D. Analog Filter Design

Commands covered: buttap
cheblap
zp2tf

| p21p
| p2bp
| p2hp
| p2bs

MATLAB contans commands for various andog filter desgns, including those for desgning a
Butterworth filter and a Type | Chebyshev filter. The commands butt ap and cheblap areused
to design lowpass Butterworth and Type | Chebyshev filters, respectively, with autoff frequencies of 1
rad/sec. For an n-pole Butterworth filter, type

[z, p, k] = buttap(n)

where the zeros of the filter are sored in z, the poles are stored in  p and the gain of thefilter isin k.
For an n-pole Type | Chebyshev filter with Rp decibels of ripple in the passband, type

[z, p, k] = cheblap(n, Rp)
To find the numerator and denominator polynomids of the resulting filter from z, p and k, type

[b,a] = zp2tf(z, p, k)

18



where a contains the denominator coefficients and b contains the numerator coefficients. Frequency
transformations from one lowpass filter to another with a different cutoff frequency, or from lowpass to
highpass, or lowpass to bandstop or lowpass to bandpass can be performed in MATLAB. These
transformations can be used with ether the Butterworth filters or the Chebyshev filters. Suppose b
and a dore the numerator and denominator of a transfer function of a lowpass filter with cutoff
frequency 1 rad/sec. To map to a lowpass filter with cutoff frequency Wb and numerator and
denominator coefficientsstoredin b1 and al, type

[ b1, al] = | p2l p(b, a, W)
To map to a highpass filter with cutoff frequency Wb, type
[ b1, al] = | p2hp(b, a, W)
To map to a bandpass filter with bandwidth Bw centered at the frequency Wb, type
[ b1, al] = | p2bp(b, a, W, Bw)
To map to abandstop filter with stopband bandwidth Bw centered about the frequency Wb, type
[bl,al] = | p2bs(b, a, W, Bw)

E. Control Design

Commandscovered: r | ocus

Congder a feedback loop as shown in Figure 1 where G(9)H(s) = KP(s) and K isagain and P(s) isa
trandfer function that contains the poles and zeros of the controller and of the plant. Theroot locusisa
plot of the roots of the closed loop transfer function as the gain is varied. Suppose that the numerator
and denominator coefficients of P(s) are used to define the transfer function P. Then the following
command computes and plots the root locus:

Rl ocus(P)

To customize the plot for a specific range of K, say for K ranging from 0 to 100, then use the following
commands.

K = 0:100;
r = rlocus(P, K);
plot(r,".")

The graph contains dots a points in the complex plane that are closed loop poles for integer vaues of
K ranging from O to 100. To get afiner grid of points, use a smdler increment when defining K, for

19



example, K = 0:.5:100. The resulting matrix r contains the closed poles for dl of the gains
defined in the vector K. Thisis particularly useful to caculate the closed loop poles for one particular
vadue of K. Notethat if theroot locus lies entirdy on thered axis thenusng pl ot (r, "' ." ) gives
inaccurate results.

F. State Space Representation

Commands Covered: SS
step
I sim
ss2tf
tf2ss
$Ss2ss

The standard State space representation isused in MATLAB, i.e,

X =Ax+Bu
y=Cx+ Du

where x is nx1 vector, u is mx1, yis px1, A isnxn, B isnxm, Cispxn and D is pxm. The sygem s
defined from the system matrices as

sys = ss(A B, C D);

The response of a system to various inputs can be found using the same commands that are used for
transfer function representations. st ep, i npul se,and | si m For example, the step response

is obtained by typing:
[y, x,t] = step(sys);

The dtates are stored in X, the outputs in y and the time vector, which is automaticaly generated, is
gored in t. Therowsof x and y contain the ates and outputs for the time pointsin t . Each
column of X representsastate. For example, to plot the second state versus time, type

plot(t,x(:,2))

To find the response of an arbitrary input or to find the response to initia conditions, usel si m Define
atime vector t and an input matrix u with the same number of rows asin t and the number of
columns equding the number of inputs. An optiond argument is the initid condition vector x0. The
command isthen given as

[y,x] = Isimsys,u,t,x0);

20



You can find the transfer function H for asngle-input/angle-output (SISO) state space system using the
command:

H=1tf(sys);

Given a trandformation matrix P, the ss2ss function will perform the amilarity transform. Store the
origind state pacemodd in sys1 and the trandformation matrix in P.

sys2 = ss2ss(sysl, P);
performs the smilarity transform z=Px resulting in a Sate space system that is defined as.

X = Ax + Bu
y=Cx+Du

where A= PAP!, B=PB, C=CP!, D=D.

21



4. Discrete-Time System Analysis

A. Convolution

Commands covered: conv
deconv

To peform discrete time convolution, x[n]*h[n], define the vectors x and h with dements in the
sequences X[n] and h[n]. Then use the command

y = conv(x, h)
This command assumes thet the fird dement in x and thefirs dementin h correspond to n=0, so that

the first lement in the resulting output vector correspondsto n=0. If thisis not the case, then the output
vector will be computed correctly, but the index will have to be adjusted. For example,

x =[11111];
h=[012 3];
y = conv(x, h);

yidds y = [0 1 3 6 6 6 5 3]. If xisindexed asdescribed above, theny[0] =0, y[1] =
1, ... Ingened, tota up the index of the firs dement in h and theindex of the firs dementin X, this
is the index of the fird dement in y. For example, if thefirs dement in h correspondsto n = -2 and
the firsd dement in x correspondsto n = -3, then the firs ement in 'y correspondsto n = -5.

Care mugt be taken when computing the convolution of infinite duration sgnas. If the vector x has
length g and the vector h haslength r, then you must truncate the vector y to have length min(q,r).

The command conv can aso be used to multiply polynomias: suppose that the coefficients of &a(s) are
given in the vector a and the coefficients of b(s) are given in the vector b, then the coefficients of the
polynomia a(s)b(s) can be found as the dements of the vector defined by ab = conv(a, b) .

The command deconv istheinverse procedure to the convolution. In thistext, it is used as ameans
of dividing polynomias. Given &s) and b(s) with coefficients stored in a and b, then the coefficients
of ¢(s) = b(s)/as) arefound by usngthecommand ¢ = deconv(b, a).

B. Transfer Function Representation

Commands Covered: tf

For a discrete-time transfer function, the coefficients are stored in descending powers of z or ascending
powers of Z*. For example,

22



27°2+3z+4 _ 243714477
7°+52+6 1+571+ 6772

H(z) =

then define the vectors as

num
den

[2 3 4];
[15 6],

Cresate the transfer function by typing
H = tf(numden, Ts);
where Tsisthe sampling time. If Ts= -1, the sampling time is undetermined.

C. Time Smulations

Commands Covered: recur
conv
dstep
di mpul se
filter

There are three methods to compute the response of a system described by the following recursve
relationship

A y
ylnl + aayn-il = a bix[n-i]
i=1 i=0

The fird method uses the command r ecur and is useful when there are nonzero initid conditions.
This command is available from the book web site and a shortened verson is given in Figure 2.5 of the
textbook. The inputs to the function are the coefficients a and b stored inthevectors a = [a; a;

ay aad b = [by by ... by, theinitid conditions on x and on y are stored in the
vectors X0 = [X[no-M, X[no-Mtl],...,X[ne-1]] and yO = [y[no-N],
y[ no-N+1],...,y[ no-1]]], andthetimeindices for which the solution needs to be cdculated

are stored in the vector n where n, represents the first dement in thisvector. Touse r ecur , type
y = recur(a, b, n, x, x0,y0);

The output is a vector 'y with dements y[n]; the firs dement of y corresponds to the time index .
For example, consider the system described by

y[n] - 0.6y[n-1] + 0.08y[n-2] = X[n-1]

23



where x[n] = u[n] and with initid conditionsy[-1] = 2, y[-2] = 1, and X[-1] = X[-2] =0. To compute
the response y[n] for n=0, 1,...,10, type

a=1[-0.6 0.08]; b=1]0 1];
x0 = 0; yo =1[1 2];

n = 0:10;

X = ones(1,11);

y:

recur(a, b, n, x, x0,y0);
The vector y contains the vaues of y[n] for n=0,1,...,10.

The second method to compute the response uses convolution and is useful when the initid conditions
on y are zero. This method involves firg finding the impulse response of the system, h[n], and then
convolving h[n] with x[n] as discussed in Section 4.A. For example, consider the system described
above with zero initid conditions, that is, y[-1]=y[-2]=0. The impulse responsefor thissysemish[n] =
5[(0.4)"-(0.2)"Ju[n]. The commands to compute y[n] are

n = 0:10;

X = ones(1,11);

h = 5*(0.4).~n - 5*(.02)."n;
y = conv(x, h);

y = y(1l:length(n));

The vector y contains the values of y[n] for n = 0,1,...,10. Note that the vector was truncated to
| engt h( n) because both x[n] and h[n] are infinite duration Sgnals. See the comments in Section
4.A regarding the convolution of infinite duration Sgnals.

The third method of solving for the response requires that the transfer function of the system be known.
The commands dstep and di npul se compute the unit step response and the unit impulse
reponse, respectively while the command fi | t er computes the response to initia conditions and to
arbitrary inputs. The denominator coefficientsaresoredas den = [1 a; a, ... ay andthe
numerator coefficientsarestoredas num = [bg b; ... by 0 ... 0] wherethereareN-
M zeros padded on the end of the coefficients. For example, consider the system given above with
initid conditionsy[-1] = y[-2] = 0. To compute the step response for n=0 to n=10, type the commands

n = 0:10;
num= [0 1 0]; den = [1 -0.6 0.08];
y = dstep(num den, |l ength(n));

The response can then be plotted using the st emplot. To compute the impulse response, Ssmply
replace dst ep with di nmpul se inthe above commands.

To compute the response to an arbitrary input, store the input sequence in the vector x . The command

24



y = filter(numden, x);

is used to compute the sysem response.  If the sysem has nonzero initia conditions, the initid
conditions can be stored in a vector v0. For a first order sysem where N=M=1, define zi =
[ bi*Xx[-1] -a*y[-1]]. Forasecond order sysem where N=M=2, define zi = [by*Xx[ -

1] +bo*x[ - 2] -ar*y[-1] -ax*y[-2],  bi*x[-1]-a,*y[-1]]. To compute the
response with nonzero initid conditions, type

y = filter(numden,x, zi);

For example, consider the previous sysem with the initid conditions y[-1] = 2 and y[-2] = 1 and input
X[n] = u[n]. Type the following commands to compute y[n].

n = 0:10; x = ones(1,11);

num= [0 1 0]; den =[1 -0.6 0.08];
zi = [0.6*2-0.08*1, -0.08*2];

y = filter(numden,Xx, zi);

D. Frequency Response Plots

Commands covered: freqz

The DTFT of a sysem can be cdculated from the trandfer function usng freqz. Define the
numerator and the denominator of the transfer functionin numand den. The command

[ H, Orega] = freqz(num den, n, ' whole');

computesthe DTFT for n points equaly spaced around the unit circle at the frequencies contained in the
vector Omega. The magnitude of H is found from abs( H) and the phase of H is found from
angl e( H) . To customize the range for W, define a vector Omega of desred frequencies, for
exanple Onega = -pi: 2*pi/ 300: pi defines avector of length 301 with values that range
from-p top. Togetthe DTFT at these frequencies, type

H = freqz(num den, Onega);

E. Digital Filter Design

Commands covered: bi |l i near
butter
chebyl
hamm ng
hanni ng

25



The andog prototype method of designing IR filters can be done by first designing an andlog filter with
the desired characterigtics as shown in Section 3.D, then mapping the filter to the discrete-time domain.

Store the numerator and denominator of the anaog filter, H(s), in the vectors numand den, and let
T be the sampling period. Then the numerator and denominator of the digitd filter Hy(z) isfound from
the following command

[ nund, dend] = bilinear(num den, 1/T)

Alternately, the commands butt er and cheby 1l automaticaly design the andog filter and then use
the bilinear transformation to map the filter to the discrete-time domain. Lowpass, highpass, bandstop,
and bandpass filters can be designed using this method. The digita cutoff frequencies must be specified;
these should be normdized by p. To design a digital lowpass filter based on the anadog Butterworth
filter, use the commands:

[ num den] = butter(n, Omegac)

where n isthe number of polesand Omegac isthe normalized digita cutoff frequency, W, = wT/p.
To design a highpass filter with cutoff frequency Omegac, use the commands

[ num den] = butter(n, Onegac, ' high')

To dedgn a bandpass filter with passband from Omegal to OregaZ2, define Orega
[ Oregal, Orega2] and usethe command

[ num den] = butter(n, Omega)

To dedgn a bandstop filter with stopband from Omegal to OnegaZ2, define Orega
[ Oregal, OnegaZ2] and usethecommand

[ num den] = butter(n, Onega, ' stop')

The design for an " order Type | Chebyshev filter is accomplished using the same methods as for
but t er exceptthat"butt er " isreplaced by "cheby 1™

[ num den] = chebyl(n, Onegac); % for a |owpass filter
[ num den] = chebyl(n, Onregac, ' high'); % for a highpass
filter

If Orega hastwo dements,

[ num den]
[ num den]

chebyl(n, Orega); % for a bandpass
chebyl(n, Onega, 'stop'); % for a bandstop

The windows used in FIR filter desgn are given by

26



boxcar (N) % rect angul ar wi ndow
hamm ng( N)
hanni ng( N)

=
nnn

These commands are used to truncate the infinite impulse response of an ided digitd filter with the result
being an FIR filter with length N.

The Signdl Processng Toolbox aso provides commands for computing the FIR filter directly. To
obtain an FIR filter with length N and cutoff frequency Omegac (normalized by p) use the command

hd = firl(N-1, Oregac)

The vector hd contains the impulse response of the FIR where hd( 1) isthevdue of hy0].
A length N highpassfilter with normaized cutoff frequency Omegec is designed by using the command

hd = firl(N-1, Oregac, ' high')
A bandpass with passband from Omegal to Orega?2 isobtained by typing
hd = firl(N-1, Orega)

where Omega = [ Omegal, Onmega2]. A bandgtop filter with stopband from Onmegal to
Omega?2 isobtained by typing

hd = firl(N-1, Orega, ' stop')
where Onega = [ Onmegal, Onmega2]. The fir 1 command usesthe Hamming window by
default. Other windows are obtained by adding an option of ' hanni ng' or ' boxcar' tothe
arguments; for example,

hd = firl(N-1, Oregac, ' hi gh', boxcar(N))
creates a highpass FIR filter with cutoff frequency Omegac using arectangular window.

F. Digital Control Design

Commands covered: bili near
c2dm
hybrid

An analog controller G(s) can be mapped to a digital controller Gy(z) usng the bilinear trandformation
or the step response matching method.  Store the numerator and denominator of G(s) in numand

27



den. Then the numerator and denominator of Gy(2) isfound from the bilinear transformation using the
commands

[ nund, dend] = bilinear(numden, 1/ T)
where T isthe sampling frequency. To use the step invariant method, use the commands
[ numd, dend] = c2dm(num den, T,' zoh")

To smulate the response of a continuous-time plant with a digitd contraller, use the command
hybri d, which is available a the book web ste. Consder the block diagram in Figure 10.27. The
numerator and denominator coefficients of the plant are sored in NGp and DGp; the numerator and
denominator coefficients of the controller are stored in NGd and DGd; the reference input Sgnd is
gored in r ; and the sampling timeisgored in T. Theincrementsin the time vector should selected to
be the sampling time divided by an integer, for example, t = 0: b: Tend where there is some
integer m such that bm=T. The command isused as

[y,ud] = hybrid(NGp, DGp, N&d, D&, T,t,r);

The outputs of the command are the system response, Yy, and the control signd that is input to the
plant, ud. The M-file contains aloop which computes the discrete-time control and then smulates the
continuous-time plant for T seconds with the congtant control.  The process repesats for the next T
second interval. The commandsfor hybr i d are given below:

function [Y,UD] = hybrid(Np, Dp,Nd,Dd, T,t, U);

[ Ac, Bc, Cc, Dc] =t f 2ss( Np, Dp) ;

[ Ad, Bd, Cd, Dd] =t f 2ss( Nd, Dd) ;

nsam = T/(t(2)-t(1)); % # of integration pts per
sanpl e

%initialize

Y = 0;

ub = 0O;

[ ncr,ncc] = size(Ac);

xc0 = zeros(ncr,1);

[ ndr, ndc] = size(Ad);

xdk = zeros(ndr,1);

kmax = fix(t(length(t))/T); %# of conplete sanples in t

for k = 0: kmax-1
% cal cul ate control and output of zoh
ek = U(k*nsamtl) - Y(k*nsamtl);
xd = Ad*xdk + Bd*ek;
zoh = Cd*xdk + Dd*ek;

28



xdk = xd;
% i ntegrate continuous-tine plant with input
% of zoh for T seconds

udi = zoh*ones(nsam+l, 1);
ti = t(k*nsamtl: (k+1) *nsanm+l) ;
[yi,xi] = IsimAc, Bc, Cc, Dc, udi ,ti, xcO0);

xc0 = xi(nsamtl, :);

% augnment vectors

Y = [Y;yi(2:nsaml)];

UD = [UD; udi (2: nsam+l)];
end

i f (kmax*nsam+tl < | ength(t))
% conmpute tail of sinmulation fromt(kmax*nsam
% to t_end
k = kmax;
% cal cul ate control and output of zoh
ek U(k*nsam+l) - Y(k*nsamtl);
xd Ad*xdk + Bd*ek;
zoh = Cd*xdk + Dd*ek;
% i ntegrate continuous-tinme plant with i nput of zoh

ti = t(k*nsamtl:length(t));
udi = zoh*ones(length(ti), 1);
[yi,xi] = IsimAc,Bc, Cc, Dc, udi,ti, xcO0);

% augnent vectors
Y =[Yyi(2:1ength(yi))];
UD = [UD; udi (2: 1 ength(udi))];
end

G. State Space Representation

Commands Covered: dl sim
dstep
di npul se

Most of the commands for the continuous time state space representation also work for the discrete
time date space. For example, ss2tf, tf2ss, and ss2ss for discretetime are used exactly
the same way as for the continuous time case discussed in Section 3.F. There is adiscrete time verson
of thecommand | si m whichisused asfollows

[y,x] = dlsimAB,C, D u,n);

where the output is stored in y, the states are stored in X, theinput isstored in u and the time index
isgoredin n.

29



5. Plotting

Commands covered: pl ot
x| abel
yl abel
title
grid
axi s
stem
subpl ot

The command most often used for plottingis pl ot , which creates linear plots of vectors and matrices,
pl ot (t,y) plotsthe vector t on the x-axis versus vector y onthey-axis. There are optionson
the line type and the color of the plot which are obtained using plot(t,y,'option’). The linetype options
are -' 0lid line (default), --' dashed line, -.' dot dash line, "' dotted line. The pointsin y can beleft
unconnected and ddlineated by a variety of symbols. + . * o x. The following colors are availlable
options:

r red

b blue
g green
w white
k black

For example, plot(t,y,"'--") usesadashedline, plot(t,y,"'*") uses* a dl thepoints
defined in t and y without connecting the points, and pl ot (t,y, ' g') usesasolid greenline.
The options can aso be used together, for example, pl ot (t,y, ' g: ') plotsadotted greenline.

To plot two or more graphs on the same set of axes, use the command pl ot (t1,y1,t2,y2),
whichplots y1 versus t 1 and y2 versus t 2.

To labd your axes and give the plot atitle, type
x|l abel ("tinme (sec)')
yl abel (' step response')
title("My Plot')

Findly, add agrid to your plot to makeit easier to read. Type

grid

30



The problem that you will encounter most often when plotting functions is that MATLAB will scde the
axesin away that is different than you want them to appear. Y ou can easly override the autoscaing of
the axesby usngthe axi s command &fter the plotting command:

axi s([xm n xmax ynm n ymax]);

where xm n, xmax, ym n, and ymax are numbers corresponding to the limits you desire for
the axes. To return to the automatic scaing, Smply type axi s.

For discrete-time sgnds, use the command st emwhich plots each point with asmall open circle and
adraight line. To plot y[K] versusk, type

stemk, y)

Youcanusestem(k,y, ' filled') togetdrdestha arefilled in. When usng Verson 3.0 of
the Signa Processing Toolbox (or verson 4.0 of the Student Verson of MATLAB), the following must
be donein order to get filled-in cirdes Thelinein gemm

h = plot(x,y," o, xx(:),yy(:),linetype);
can be replaced with

h = plot(x,y,".",xx(:),yy(:),linetype);
set (h, " markersi ze', 18);

to create closed circles.

To plot more than one graph on the screen, use the command subpl ot ( mp) which partitions the
screen into an mxn grid where p determines the postion of the particular graph counting the upper Ieft
corner asp=1. For example,

subpl ot (211), sem | ogx(w, magdb) ;
subpl ot (212), sem | ogx(w, phase);

plots the bode plot with the log-magnitude pot on top and the phase plot below. Titles and labels can

be inserted immediately after the appropriate sem | ogx command or pl ot command. To return
to afull screen plot, type subpl ot (111).

31



6. Loading and Saving Data

When usng MATLAB, you may wish to leave the program but save the vectors and matrices you have
defined. To savethefileto the working directory, type

save fil enane
where"f i | enane"” isaname of your choice. To retrieve the datalater, type

|l oad fil ename

32



