
1

Signal and Linear System Analysis - 2nd Edition
Gordon E. Carlson

MATLAB®
 Tutorial

Contents

1.0   Basic MATLAB Information       3

1.1   Statements       3

1.2   Numeric Format       5

1.2.1   Complex Numbers       5
1.2.2   Matrices       6
1.2.3   Vectors       7
1.2.4   Arrays       9
1.2.5   Special Numbers       9
1.2.6   Polynomial Coefficients and Roots       9

1.3   Character Strings       10

1.4   Arithmetic and Logical Operations       10

1.4.1   Arithmetic Operations       10
1.4.2   Logical Operations       12

1.5   Mathematical Functions       13

1.6   Mathematical Expressions       14

1.7   Flow Control       14

1.7.1   For Statement       15
1.7.2   While Statement       15
1.7.3   If Statement       16

1.8   Other Functions and Commands       17

1.8.1   Numeric Functions       17
1.8.2   Data Storage and Retrieval Commands       19
1.8.3   Plotting Functions and Commands       20



2

1.9   M-Files       20

1.9.1   Script M-Files       20
1.9.2   Function M-Files       22

2.0   Specific Application Information       23

2.1   Signal and System Analysis Functions       24

2.1.1   Step and Ramp Functions       24

2.1.2   Plotting Functions       24
2.1.2.1   Continuous-Time Signals       25
2.1.2.2   Discrete-Time Signals       26
2.1.2.3   Multiple Plots       26
2.1.2.4   Plotting Examples       26

2.1.3 Continuous-Time Fourier Series and Fourier Transform Functions       27
2.1.3.1   Fourier Series Coefficients       27
2.1.3.2   Truncated Fourier Series       28
2.1.3.3   Fourier Transform       29
2.1.3.4   Inverse Fourier Transform       29

2.1.4   Discrete-Time Fourier Series and Fourier Transform Functions       30
2.1.4.1   Discrete-Time Fourier Series Coefficients       30
2.1.4.2   Discrete-Time Fourier Series       31
2.1.4.3   Discrete-Time Fourier Transform       31
2.1.4.4   Inverse Discrete-Time Fourier Transform       32

2.1.5   Straight-Line Approximate Bode Plot Functions       32
2.1.5.1   Transfer Function Parameter Computation       33
2.1.5.2   Straight-Line Data Computation       34

2.1.6   Pole-Zero Plotting Function       34

2.1.7   Butterworth and Chebyshev Filter Order Selection Function       35

2.2   Techniques and Functions Used in Text Examples       36

2.2.1   Part I  - Fundamental Concepts       37
2.2.2   Part II  - Continuous-Time Signals and Systems      37
2.2.3   Part III  - Discrete-Time Signals and Systems       41



3

Signal and Linear System Analysis
Gordon E. Carlson

MATLAB Tutorial

This tutorial provides basic MATLAB information and specific application information
for the text “Signal and Linear System Analysis - 2nd Edition” by Gordon E. Carlson. 
The MATLAB User’s and Reference Guides should be used to obtain greater breadth and
depth of information.

The text is designed so it will work with either the MATLAB Professional Version,
plus the Signal Processing, Control System, and Symbolic Math Toolboxes, or the
MATLAB Student Edition.

1.0  Basic MATLAB Information

On initiation of MATLAB, the Command Window appears on the monitor screen. 
The values of all variables defined after initiation are stored in the Workspace.

The Command Window can be cleared by clicking on Edit - - Clear Session.  This
does not clear the  Workspace.  The Workspace is cleared by the command clear all.

1.1  Statements

Statements (commands, data entries, functions, mathmatical expressions, logical
expressions,flow control) are typed at the prompt

Professional Version              Student Edition
>>  EDU>>

If the statement is too long for a single line, it can be extended by typing three periods
followed by pressing the Enter key.  After the statement is complete, pressing the Enter
key causes command, data entry, function, or expression execution.   Results are stored as
ans in the workspace and displayed in the Command Window.  To minimize vertical
space required in the window, click on Options - -Numeric Format - - Compact.

>>   3.45 (Enter)
ans =

  3.4500
>> (Enter)
>>   sqrt(1.44) (Enter)
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ans =
  1.2000

>> (Enter)
>>   2+6.35+sqrt(36) ... (Enter)

 +sqrt(49) (Enter)
ans =

  21.3500

The statement sqrt(1.44) uses the MATLAB function sqrt to compute the square-root of
1.44.

Previously entered statements in the Command Window are stored in a buffer.  They
can be recovered for reuse or for modification and reuse by using the Up Arrow key.  The
buffer is not cleared by either clear all or Edit - - Clear Session.  It is only cleared by
exiting and reentering MATLAB.

Data can be given a name, that is, stored as a variable.  Multiple statements, separated
by commas, can be typed at one prompt.  The statements are executed from left to right.

>>   a=16,  b=sqrt(a)
a =

  16
b =

  4

Variable names are case sensitive.  That is mb and Mb are two different variables.  Other
variable name rules are indicated in the MATLAB User's Guide.

If statements are each terminated with a semicolon (;), then they are executed but the
result is not printed to the Command  Window.  The values entered or computed can be
subsequently displayed by entering the variable values at a prompt.

>>   c=25;  d=sqrt(b)+2.5;
>>
>>   ans,  a,  b,  c,  d
ans =

  21.3500
a =

  16
b =

  4
c =

  25
d =

  4.5000
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Note that all entered and computed values remain in the Workspace and can be used or
printed to the Command Window.  The last value stored in ans, 21.3500, has
overwritten the first and second values stored, 3.4500, and 1.2000.

To determine which variables are stored in the Workspace and their size, we can use
the command whos.  If we do this now at the conclusion of Section 1.1, we see the
following in the Command Window.

>>   whos
Name Size Elements Bytes Density Complex

       a      1 by 1   1   8 Full   No
   ans      1 by 1   1   8 Full   No
       b      1 by 1   1   8 Full   No
       c      1 by 1   1   8 Full   No
       d      1 by 1   1   8 Full   No

Grand total is 5 elements using 40 bytes

Throughout this tutorial, we assume that the Workspace is cleared only at the end of
every section, except when we indicate otherwise.

1.2  Numeric Format

So far we have only entered and used real numbers.  We can also enter and use other
types of numbers.

1.2.1  Complex Numbers

A complex number consists of a real part and an imaginary part.  We can use i or j as
an indicator for the imaginary part.  A complex number printed to the Command
Window always uses the indicator i.  The real part, imaginary part, amplitude, and angle
in radians, of a complex number are given by the functions real, imag, abs, and angle,
respectively.

>>   a=3 - 4j,  b=real(a),  c=imag(a),  d=abs(a),  e=angle(a)
a =

  3.0000 - 4.0000i
b =

  3
c =

 -4
d =

  5
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e =
 -0.9273

We can also enter a complex number as a=3 - j*4, where * indicates multiplication, if j has
not been redefined in an earlier statement.  This form of entry is required if the imaginary
part is to be generated by a function.  If j has  been redefined in an earlier statement, we
must again define it to be j = sqrt(-1) before using it to generate a complex number. 

>>   f=4;  g=9;  h=sqrt(f)+j*sqrt(g)
h =

 2.0000+3.0000i

`
1.2.2  Matrices

All numeric values are stored in matrices.  The single values considered in the above
sections are stored in (1x1) matrices.  We enter a (n x m) matrix (n rows, m columns) by
entering the individual matrix term values row by row within square brackets.  We can
enter more than one row on a single statement line if we use semicolons between rows.

>>   a=[3  4 (Enter)
 2  1] (Enter)

a =
  3   4
  2   1

>> (Enter)
>>   b=[1.5  -2.4  3.5  0.7;  -6.2  3.1  -5.5  4.1; (Enter)

 1.1  2.2  -0.1  0] (Enter)
b =

  1.5000   -2.4000    3.5000   0.7000
 -6.2000    3.1000   -5.5000   4.1000
  1.1000    2.2000   -0.1000            0

Individual matrix entries, or a submatrix made up of original matrix entries, can be
obtained by specifying row and column indices of the desired entries in two one-row
matrices.

>>   e=b(2,  3),  f=b([2  3], [1  3]),  g=b(2, [3  4])
e =

  -5.5000
f =

  -6.2000   -5.5000
   1.1000   -0.1000

g =
  -5.5000    4.1000

We can construct a matrix from submatrices.



7

>>   h=[1  2  3],  k=[4;  7],  m=[5  6;  8  9]
h =

  1   2   3
k =

  4
  7

m =
  5   6
  7   8

>>   n=[h;  k  m]
n =

  1   2   3
  4   5   6
  7   8   9

All submatrices in each specified row of submatrices must have the same number of rows.
 Also, the sum of the number of submatrix columns in all specified rows of submatrices
must be equal.

1.2.3  Vectors

A row vector is an one-row matrix and a column vector is a one-column matrix. 
Therefore, they are entered like matrices.

>>   a=[3  5  9],  b=[3;  5;  9]
a =

  3   5   9
b =

  3
  5
  9

We can also enter a row vector with equally spaced values by using the colon notation

>>   c=2:5,  d=3:2:9
c =

  2   3   4   5
d =

  3   5   7   9

Note that the middle number in the specification for the d vector specifies the interval
between vector values.  A row vector entered with the colon notation is particularly useful
when we want to evaluate a mathematical function over an interval of independent
variable values.  For example, consider the evaluation of the function y(x) = (x)1/2 over the
interval 0.5 ≤ x ≤ 2.0 at values of x that are multiples of 0.25.
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>>   x=0.5:0.25:2.0;
>>   y=sqrt(x);
>>   x,  y
x =

  0.5000   0.7500   1.0000   1.2500   1.5000   1.7500   2.0000
y =

  0.7071   0.8660   1.0000   1.1180   1.2247   1.3229   1.4142

We can use a vector to create a vector that contains only a subset of an original
vector’s values.

>>   f=[10  5  4  7  9  0],  g=[2  5  6];  h=f(g)
f =

  10   5   4   7   9   0
h =

  5   9   0

One use for this technique is to select every nth value of an independent variable and a
function of this variable.  For example, to select every third value of the independent
variable x and the function y = sqrt(x), we use the commands.

>>   k=1:3:7;  x1=x(k),  y1=y(k)
x1 =

  0.5000   1.2500   2.0000
y1 =

  0.7071   1.1180   1.4142

We can obtain a submatrix of a matrix by using colon notation for two row vectors
that specify the row and column indices of the desired entries.

>>   m=[1.5  -2.4  3.5  0.7;  -6.2  3.1  -5.5  4.1;
             1.1  2.2  -0.1  0]
m =

  1.5000   -2.4000    3.5000   0.7000
 -6.2000    3.1000   -5.5000   4.1000
  1.1000    2.2000   -0.1000            0

>>
>>   n=m(1:2,2:4), o=m(:, 1:2), p=m(2, :)
n =

 -2.4000    3.5000   0.7000
  3.1000   -5.5000   4.1000

o =
  1.5000   -2.4000
 -6.2000    3.1000
  1.1000    2.2000

p =
 -6.2000   3.1000   -5.5000    4.1000
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Note that a colon by itself indicates all rows or all columns.

1.2.4  Arrays

Matrices or vectors can also be interpreted as two-dimensional or one-dimensional
arrays, respectively.  This is the interpretation that we use in most of our MATLAB
applications in “Signal and Linear System Analysis - 2nd Edition”.

1.2.5  Special Numbers

Two special numbers are provided in MATLAB.  They are π and infinity and are
given the notation pi and Inf, respectively.  In addition, operations such as 0/0 or
sin(infinity) produce an undefined results that is given the notation NaN, which stands for
Not a Number.

1.2.6  Polynomial Coefficients and Roots

An nth degree polynomial in the variable x is anxn + an-1x
n-1 + . . . + a1x + ao.  We

can define its coefficients by a one-dimensional row array (vector) of length n.  To find the
roots of the polynomial for this coefficient array, we can use the function roots.  The
results of this function is a one-dimensional column array containing the n roots.  If we
know the roots of a polynomial, we can place them in a column array and use the function
poly to find the row array of polynomial coefficients (except for the multiplicative
constant, an.  Finally, if we want to multiply two polynomials, we use the row arrays of
their coefficients a and b as inputs to the function conv(a,b).  The output of this function
is the row array of the product-polynomial coefficients.

>>   a=[2  5  6  3];  b=[3  9  3];  r=roots(a)
r =

  -0.7500 + 0.9682i
  -0.7500 -  0.9382i
  -1.000

>>
>>   c=poly(r)
c =

  1.0000   2.5000   3.0000   1.5000
>>
>>   d=conv(a,b)
d =

  6   33   67   73   39   6
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1.3  Character Strings

In addition to numbers, MATLAB can also store and use text.  We require text, for
example, when we want to label output data or plots.  Text is stored in character strings,
which we normally call just strings.  We designate them by a single quote, or apostrophe, '
at the beginning and at the end of the character string.

>>   'Signal and System Analysis'
ans =
Signal and System Analysis
>>
>>   title='               Sample Index',  n=1:6
title =
               Sample Index
n =

  1     2     3     4     5     6

Another use for a character string is in the flow control statements to be discussed in
Section 1.7.  In these statements, we can use 't' and 'f' as true and false indicators to
perform statement execution control.

The character strings are stored in arrays with one character corresponding to one
array element.  Therefore, we can select a portion of a character string to use or print.

>>   M='MATLAB Character String'
M =
MATLAB Character String
>>
>>   C=M(8:16)
C =
Character

1.4  Arithmetic and Logical Operations

There are a number of basic operations that we use to generate mathematical
expressions.  Some are arithmetic operations and some are logical operations.

1.4.1  Arithmetic Operations

The arithmetic operations of matrix addition, subtraction, multiplication, raise to a
power, and transpose are specified by +, -, *, ^, and ', respectively.  In addtion, b/c and c\b
specify the multiplication of matrix b by the inverse of square matrix c on the right and the
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inverse of square matrix c on the left, respectively.  Note that the matrix sizes must be
equal for addition and subtraction, conformable for multiplication, /, and \ operations, and
square for the raise to a power operation.

>>   a=[1  2;  3   4],  b=[3  1;  7  8],  c=[2  4]
a =

  1   2
  3   4

b =
  3   2
  7   8

c =
  2   4

>>
>>   d=a+b,  e=c*a,  f=a^2,  g=c'
d =

   4     3
  10   12

e =
  14   20

f =
   7   10
  15   22

g =
   2
   4

>>   h=a\b,  k=b\a
h =

  1.0000   6.0000
  1.0000  -2.5000

k =
  -4.5000   2.5000
  -2.0000   3.0000

We define arithmetic operations on an array to be operations on an element by element
basis.  Since matrix addition and subtraction are element by element operations, then array
addition and subtraction equal matrix addition and subtraction.  Therefore, these
operations are specified by + and -.  Array multiplication, division, transposition, and raise
to a power are specified by .*, ./, .’,  and .^, respectively.  Note that two arrays used in an
arithmetic array operation must be the same size.

>>   m=a.*b,  n=b./a,  o=b.^a
m =

   3    2
 21   32

n =
  3.0000   0.5000
  2.3333   2.0000
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o =
      3         1
  343   4096

An exception to the array or matrix size requirements occurs when we add, subtract,
multiply or divide by a constant.  In these cases the constant is added to, subtracted from,
multiplied times, or divided into each array or matrix element.

>>   p=c+2,  q=c - 2,  r=2.*c,  s=c./2,  t=2*c,  u=c/2
p =

  4   6
q =

  0   2
r =

  4   8
s =

  1   2
t =

  4   8
u =

  1   2

Note that a matrix multiplication or division operation is an array operation when
multiplication or division by a constant is performed.

1.4.2  Logical Operations

The logical operations “and”, or, and “not” are specified by &, |, and -, respectively. 
These can be used in conjunction with the relational operations

< less than
<= less than or equal
> greater than
> = greater than or equal
= = equal
~ = not equal

to construct arrays of “zeros” and “ones” (0-1 arrays).  The ones correspond to elements
for which the logic operation is satisfied.

>>   a=[1  3  2;  4  6  5],  b=a>2&a<=5
a =

  1   3   2
  4   6   5
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b =
  0   1   0
  1   0   1

>>
>>   c=[1  5  3  4  7  8],  d=c>4
c =

  1   5   3   4   7   8
d =

  0   1   0   0   1   1

1.5  Mathematical Functions

MATLAB contains a set of built-in mathematical functions.  All of these functions are
applied to arrays on an element by element basis.  Thus, they return an array having the
same size as the input array with elements all modified in the same way.  We have already
defined and used five of the functions.  These are

sqrt - square root
real - complex number real part
imag - complex number imaginary part
abs - complex number magnitude
angle - complex number angle

If a number is real, then abs produces the absolute value of the number.  Other
available mathematical functions that are of interest to us in signal and system analysis
include

exp - exponential base e
log - logarithm base e
log 10 - logarithm base 10
sin - sine
cos - cosine
tan - tangent
asin - arcsine
acos - arccosine
atan - arctangent
atan2 - four quadrant arctangent
round - round to nearest integer

floor - round toward - ∞
ceil - round toward ∞

The trigonometric functions all apply to angles expressed in radians.
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1.6  Mathematical Expressions

We can combine arithmetic operations, 0-1 arrays generated by logical operations, and
mathematical functions into mathematical expressions.  Often, these expressions take the
form of equations, although they may also be used in flow control statements.  The
arithmetic operations follow the usual precedence rules.  Many mathematical expressions
require parentheses to construct the desired sequence of operations within the precedence
rules.

>>   t=0.1;  x=2^t*sqrt(t) - sin(2*t)/3
x =

  0.2727
>>
>>   y=2^(t*sqrt(t)) - sin(2*t)/3
y =

  0.9559

We can evaluate a mathematical expression for a set of independent variable values by
expressing the independent variable as a one-dimensional array (vector) and using array
operations.

>>   f=0:2:4;  w=2*pi*f;
>>   X=(3 - j*0.1*w)./(1.5+j*0.2*w)
X =

  2.0000  0.1566 - 1.1002i   -0.2956 - 0. 6850i

One important use of a 0-1 array for signal and system analysis is in the representation of a
piecewise defined signal with a mathematical expression.

>>   t=-0.5:0.5:2.5;
>>   x=(t+1).*(t>=0&t<1)+2*(t>=1&t<=2)
x =

  0   1.0000   1.5000   2.0000   2.0000    2.0000   0

The notation .* is required for the first mulitplication since we want element by element
multiplication of the two like-sized, one-dimensional arrays.  We can use just * for the
second multiplication since it is a constant times an array.

1.7  Flow Control

MATLAB has flow control statements that we can use to repetitively or selectively
execute other statements.  Each of these must be associated with an end statement.



15

1.7.1  For Statement

The for statement permits us to execute the same set of statements repetitively for a
designated number of times.  It is the equivalent of FOR or DO statements found in

computer languages.  For example, to evaluate the summation tk=x(t) 1.2k3
=1kΣ   for

0≤t≤0.8s at dt = 0.2s intervals and print out the results, we can use the statements

>>   t=0:0.2:0.8; (Enter)
>>   x=zeros(size(t)); (Enter)
>>   for k=1:3; (Enter)

   x=x+sqrt(k)*t.^sqrt(1.2*k); (Enter)
 end; (Enter)

>>   x (Enter)
x =

      0   0.3701   1.0130   1.8695   2.9182

For statements can be nested

>>   for m=1:3;
   for n=1:4;
     y(m,n)=m+n;
   end;
 end;

>>   y
y =

  2   3   4   5
  3   4   5   6
  4   5   6   7

The size of array y was kept small, 3 x 4, so it could be printed in a reasonable amount of
space.  If we increase the size of array y to 200 x 200, then it requires approximately 8s to
execute the statements.  Execution time can be reduced to approximately 4.3s if array y is
formed before computing values for it.  This can be done by using the statement
y=zeros(200,200) prior to the first for statement.  Execution time is measured with
function tic inserted before and function toc inserted after the statements for which
execution time is desired.

1.7.2  While Statement

The while statement is like the for statement except that it executes a set of statements
repetitively for a non-designated number of times.  Execution stops when a logic
expression is satisfied.  The statements

>>   n=1;
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>>   while 2*n<5000;   n=2*n;   end;
>>   n
n =

  4096

compute the largest power of 2 that is less than 5000.

1.7.3  If Statement

The if statement permits us to execute statements selectively depending on the
outcome of a logic expression.

>>   for k=1:4;
    if k==1;   x(k)=3*k;
      elseif k==2|k==4;   x(k)=k/2;
      else;   x(k)=2*k;
    end;
 end;

>>   x
x =

  3   1   6   2

If statements can be nested.  Also, we can use the string variables 't' and 'f' in an  == or ~=
logic expression to execute statements controlled by an if statement.

>>   c='t';   n=2;
>>   if c=='f';  c='false';  y=NaN;   end;
>>   d=0.1:0.1:0.4;
>>   if c=='t';

   if n==2;   y=10*d(n);
     else;   y=0
   end;
 end;

>>   c, y
c =
t
y =

  2

If c = 't' and n =/  2, the result of the above statements is

c =
t
y =

 0
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On the other hand, if c = 'f', then the results of the above statements is

c =
false
y =

  NaN

regardless of the value of n.

1.8  Other Functions and Commands

There are a large number of MATLAB functions and commands available in
MATLAB and its toolboxes.  We have already mentioned the functions roots, poly, and
conv in Section 1.2.6.  We mention several additional general functions here that are
useful for our signal and system analyses.  Other, more specific functions are briefly
described in the text where they are first used.  Some of the functions have variations that
are not described here.  These are invoked by changes in input and output specifications. 
See the Reference and User's Guides for more information.

The functions and commands described here and in the text do not encompass all
functions and commands used.  The MATLAB Reference Guide and the Toolbox User's
Guides contain information on those not described here or in the text.

1.8.1  Numeric Functions

find(A)  - Returns a one-dimensional row-array containing the indices of non-zero
elements of a one-dimensional array.  It can be used with 0-1 arrays
to find indices of elements that have other values.

>>   a=[1  0  2  3  0  4];   b=find(a)
b =

  1   3   4   6
>>   n=find(a>2)
n =

  4   6

size(A,i) - Returns the number of rows in A if i=1 or the number of columns in
A if i=2.  If i is not included, then a row vector containing both the
number of rows and the number of columns is returned.

zeros(m,n) - Returns an (m x n) array of zeros.  A modification is zeros(size(A))
which returns an array of zeros having size equal to the size of A.
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max(A) - Returns the value of the largest element in a one-dimensional array.
 max(max(A)) returns the value of the largest element in a two-
dimensional array.

min(A) - Like max(A) except that it returns smallest values.

mean(A) - Returns the mean, or average value, of all elements in a one-
dimensional array.  Returns a one-dimensional row-array containing
 the mean values of the elements in the columns of a two-
dimensional array.

meshgrid(A,1:n)  - Returns an array having n rows where each row is the one-
dimensional array A.

>>   d=-0.1:0.1:0.2;   dm=meshgrid[d,1:3]
dm =

  -0.1   0   0.1   0.2
  -0.1   0   0.1   0.2
  -0.1   0   0.1   0.2

sum(A) - Returns the sum of the elements of A if A is a one-dimensional
array.  Returns a one-dimensional row-array that contains the sums
of the columns of A if A is a two-dimensional array.

>>   e=[1  2  3],  es=sum(e),  f=[4;  5;  6],  fs=sum(f)
e =

  1   2   3
es =

  6
f =

  4
  5
  6

fs =
  15

>>
>>   g=[1  2  3;  4  5  6],  gs=sum(g)
g =

  1   2   3
  4   5   6

gs =
  5   7   9

The sum statement can be used with the meshgrid statement to evaluate a summation for
a range of independent variable values.  To illustrate this usage, we consider the

evaluation of the summation tk=x(t) 1.2k3
=1kΣ for 0 ≤ t ≤0.8s at dt= 0.2s intervals.
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>>   t=0:0.2:0.8;  k=1:3;  c=sqrt(k);  n=sqrt(1.2*k);
>>   tm=meshgrid(t,1:size(k,2));
>>   cm=meshgrid(c,1:size(t,2)).';
>>   nm=meshgrid(n,1:size(t,2)).';
>>   x=sum(cm.*tm.^nm);
>>   tm,  cm, nm,  x
tm =

      0   0.2000   0.4000   0.6000   0.8000
      0   0.2000   0.4000   0.6000   0.8000
      0   0.2000   0.4000   0.6000   0.8000

cm =
   1.0000   1.0000   1.0000   1.0000   1.0000
   1.4142   1.4142   1.4142   1.4142   1.4142
   1.7321   1.7321   1.7321   1.7321   1.7321

nm =
   1.0954   1.0954   1.0954   1.0954   1.0954
   1.5492   1.5492   1.5492   1.5492   1.5492
   1.8974   1.8974   1.8974   1.7984   1.7984

x =
      0   0.3701   1.0130   1.8695   2.9182

The meshgrid statements permit us to set up equal size arrays with the number of
columns equal to the number of values of t (note the transpose required to produce cm
and nm).  The sum of the arithmetic operations on these arrays for each column is the
desired summation values at the corresponding value of t.  Note that we have evaluated
the same summation as we did earlier in Section 1.7.1 using the for statement.  More
statements were required but less execution time is needed since the full array capability of
MATLAB is being used.  The difference in executions time is insignificant when only three
values are computed for the summation.  We used only three so that we could print the
meshgrid arrays in reasonable space.  If we compute 10000 values instead of 3, the
execution time using meshgrid and sum is approximately 1.2s; whereas, the execution
time using for is approximately 7s.

1.8.2  Data Storage and Retrieval Commands

diary filename - Saves the contents of the Command Window, up to
the command diary off, in the file filename in the
MATLAB directory.

save filename variables - Saves the variables from the Workspace in the file
filename.mat in the MATLAB directory.
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load filename - Loads the file filename.mat from the MATLAB
directory.

1.8.3  Plotting Functions and Commands

plot(x,y) - Plots the variable y versus the variable x in the current Figure
Window by connecting data values with straight lines.  By
itself, it provides only a default scaling and size.  The plotting
functions plct and pldt provide more flexibility in plot
characteristics.  They are discussed in Section 2.1.2 of this
tutorial.

xlabel('text') - Labels the x-axis of a plot with the text specified by 'text'.

ylabel('text') - Labels the y-axis of a plot with the text specified by 'text'.

text(x,y,'text') - Adds the text specified by 'text' to a plot at the location (x, y),
where x and y are the horizontal and vertical axis coordinates,
respectively.

figure - Opens a new Figure Window.

print filename -deps 2     - Prints the figure in the current Figure Window to file
filename.eps in Encapsulated Post Script 2 format (See
the MATLAB Reference Guide for other possible
formats).

1.9  M-Files

Files with the filename extension .m stored in the MATLAB directory, or toolbox
subdirectories of the MATLAB directory, are executable files.  We call such files m-files
and they come in two different types: script and function.  The functions that we have
already defined and used are contained in function m-files in the MATLAB toolboxes.

1.9.1  Script M-Files

We have shown how we executed a series of statements to evaluate one mathematical
expression.  When we press the Enter key after typing a statement, or a sequence of
statements following a for, while, or if statement, the statement, or sequence of statements
is executed.  The result is stored in the Workspace and printed in the Command
Window.  However if the statement, or sequence of statements, is terminated with a
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semicolon (;), then the print to Command Window is suppressed.

Since the statements are executed as they are entered in the Command Window, then
we must reenter them if we want to repeat the computations.  Such a repeat of
computations is necessary if we want to investigate the effect of changing parameters.  To
avoid having to reenter all the statements, we can generate the statements with a text
editor or a word processor.  We then store them in a file in the MATLAB directory with
the filename extension .m.  We call such files script “m-files” and we can execute the
statements in them by typing the file name  in the Command Window and pressing the
Enter key.  For example, we can store the statements

% plsig.m  -  Plots two signals

t=0:0.01:10; % Defines time interval
x=3*sin(0.4*pi*t - 0.1)+4*cos(0.85*pi*t+0.3);

 y=3*sin(0.4*pi*t+0.3)+4*cos(0.85*pi*t - 0.4);
plot (t,x);  xlabel('t');  ylabel('x');
figure;
plot(t,y);  xlabel(‘t’);  ylabel(‘y’);

in file plsig.m in the MATLAB directory.  These statements generate the plots of the two
signals x(t) and y(t) for 0≤t≤10.  The statements or portion of statements preceded by %
are comment statements only and are not executed.  The two plots are generated when we
type

>>   plsig (Enter)

in the Command Window.  The two signals are plotted as Figure No. 1 and Figure No. 2
in two Figure Windows.  At the completion of execution, Figure No. 2 appears in the
Figure Window.  To view Figure No. 1, click on Windows - - Figure No. 1.  To make a
hard copy of a figure, click on File - - Print while the figure is in the Figure Window. 
To erase a figure, click on File - - Close while the figure is in the Figure Window.  To
return to the Command Window click on Windows - - Command or begin typing a
new statement.

If we want to make changes to the script m-file plsig.m we can type

>>   ! (Enter)

in the Command Window to change to the DOS Window.  We are then in the MATLAB
directory and can edit the plsig.m  m-file as desired.  To return to the Command
Window we type Exit followed by pressing the Enter key.
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1.9.2.  Function M-Files

Function m-files are like script m-files except that variable values may be passed into
or out of function m-files.  Also, variables defined and manipulated only inside the file do
not appear in the Workspace.  The first line of a function m-file starts with the word
function and defines the function name and input and output variables.  For example

function [z,w] = abcd(x,y)

is the first line of the function m-file abcd.m.  The input variables of this function are x
and y and the output variables are z and w.  Each input and output is an array or matrix. 
If the array is (1x1), then the variable has a single real or complex value.

Many of the functions we have previously defined, such as y = sin(x), are built-in
MATLAB functions.  However, others are contained in function m-files in MATLAB
toolboxes.  For example, the function m-file mean.m contains the statements

function  y=mean(x)
% MEAN Average or mean value
% For vectors, MEAN(X) is the mean
% value of the elements in x
% For matrices, MEAN(X) is a row vector
% containing the mean value of each column
% See also MEDIAN, STD, MIN, MAX
% Copyright © 1984-94 by Mathworks, Inc.

[m,n] = size(x)
if m==1

m=n;
end
y = sum(x)/m;

We can create our own functions in the MATLAB directory for computations that we
want to perform more than once.  For example, we can convert the script m-file plsig.m
into a function m-file with signal frequency, signal phase, and computation time interval
inputs.  In this way, we can change the signal frequencies and phases and the computation
time interval without having to edit the m-file.  Also, since the two signals have the same
form and only differ in frequency and phase values, we can generate them with a second
function m-file, ssig.m.

M-file ssig.m

function  s=ssig(t,f1,P1,f2,P2)
%   ssig.m - Sum of sinusoids signals
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s=3*sin(2*pi*f1*t+P2)+4*cos(2*pi*f2*t+P2);
M-file plsigf.m

function  plsigf(t1,t2,f1,f2,Px1,Px2,Py1,Py2)
% plsigf.m - Plots two sum of sinusoids signals

t=t1:0.01:t2; % defines time interval
x=ssig(t,f1,Px1,f2,Px2);
y=ssig(t,f1,Py1,f2,Py2);
plot (t,x);   xlabel('t');   ylabel('x');
figure;
plot (t,y);   xlabel('t');   ylabel('y');

To create the same plots as we did in Section 1.9.1, we type

>>   plsig(0,10,0.2,0.425,-0.1,0.3,0.3,-0.4)

in the Command Window and press the Enter key.  With different input variable values,
we can generate other sum of sinusoid plots.

2.0  Specific Application Information

In Section 2, we first present several function m-files that we have created specifically
for signal and system analyses.  These functions are used in examples contained in “Signal
and Linear System Analysis” and are useful for end-of-chapter problems and other signal
and system analysis tasks.  The function m-files are available in this John Wiley and Sons
FTP Archive location as “Signal and System Analysis Functions - Carlson ” so that they
can be downloaded and used.

MATLAB is used in 76 examples in the text, “Signal and Linear System Analysis”.  In
addition, 102 of the end-of-chapter problems are designed specifically for solutions using
MATLAB.  Many of the remaining end-of-chapter problems can also be solved using
MATLAB.  The script m-files, function m-files, and data files required for the text
examples and problems are available in this John Wiley & Sons FTP Archive location as
“Text Example and Data Files - Carlson”.  The script and function m-files are identified by
example number.  For example, e66.m and e66a.m are script m-files used in Example 6.6
and e94a.m and e94be.m are script m-files used in Example 9.4.  The data are stored in
mat-files which can be loaded into the MATLAB Workspace with the load command. 
The filename indicates either the type of data or the example or problem in which it is
used.  For example, sentence.mat contains data for a spoken sentence, e1613h.mat
contains data used in Example 16.13, and p1544.mat contains data used in Problem
15.44.
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2.1  Signal and System Analysis Functions

We have created sixteen function m-files for use in signal and system analyses.  These
functions encompass:

1. step and ramp signal functions,

2. continuous-time and discrete-time signal plotting functions,

3. continuous-time Fourier series and Fourier transform functions,

4. discrete-time Fourier series and Fourier transform functions,

5. straight-line approximate Bode plot functions,

6. a pole-zero plotting function, and

7. a Butterworth or Chebyshev filter-order-selection function.

All of the functions contain help statements at the beginning.  These statements indicate
the function’s purpose, define input and output variables, and, in a few cases, provide
useful modification suggestions and requirements.

2.1.1  Step and Ramp Functions

We use step and ramp functions often in signal and system analysis.  Therefore, we
have created the MATLAB functions u = us(t) and r = ur(t) to compute them.  The values
computed for u are 0 for t<0 and 1 for t>=0.  Likewise, the values computed for r are 0
for t<0 and t for t >=0.

2.1.2  Plotting Functions

The plotting functions that we have created contain several input variables.  These
variables permit us to specify variables plotted, plot scale and grid, plot size and location
in the Figure Window, and line weight and type.  For simplicity, we refer here to plotting
continuous-time and discrete-time signals.  Actually, the plotting functions are valid for
any continuous-variable or discrete-variable function of any independent variable (such as
time, frequency, distance, etc.). 
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2.1.2.1  Continuous-Time Signals

We plot a continuous-time signal by connecting the signal values with straight time
segments. A smooth curve is produced if the time increment between the available signal
values is small with respect to the time axis length plotted.  The continuous-time signal
plotting function is

plct(x,y,xg,yg,p,aw,lw,lt,axs)

where the variables x and y are plotted in the horizontal and vertical directions,
respectively.

The vector xg specifies the grid line locations along the horizontal axis.  The
horizontal axis variable is plotted from xg(1) to xg(size(x,2)).  For equal grid line spacing
along the horizontal axis, we can use xg=x1:dx:x2 where dx is the grid line spacing.  The
vector yg specifies the same information for the vertical axis.

The vector p is a (1x4) vector having the elements

p(1) = horizontal location of plot lower left corner

p(2) = vertical location of plot lower left corner

p(3) = plot horizontal size

p(4) = plot vertical size

All locations and sizes are specified in terms of fractions of the Figure Window
dimensions.  The default figure window aspect ratio is 3 by 4.  This means that a fractional
distance or size specified in the vertical direction is 3/4 as large as the same fractional
distance or size specified in the horizontal direction.

The variables aw and lw are used to specify the line width for the axes and plotted
curve respectively.  Good initial choices for the values of these variables are aw=1 and
lw=1.5, respectively.  The variable lt specifies the line type used for the plotted curve. 
Choices include solid '-' and dashed '--' lines.  See the Reference Guide for all available
choices.  We use the final input variable axs to specify whether we want a linear, axs=0,
semilog, axs=1, or loglog, axs=2, plot.

The grid lines are dotted and labelled with values in a Times font.  These default
specifications can be changed by editing the plct.m file.  Also, the grid lines can be turned
off by replacing grid on with grid off in the plct.m file.
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2.1.2.2  Discrete-Time Signals

We plot a discrete-time signal as vertical lines at the signal sample location.  The
vertical lines are topped with a specified symbol.  The discrete-time signal plotting
function is

pldt(n,y,T,xg,yg,p,aw,lw,st,lt)

where the variables y, xg, yg, p, aw, lw and lt are the same as used in plct.  In place of the
horizontal axis variable x in plct, we have the signal sample index vector n in pldt.  We
also specify the spacing between the signal samples with the variable T.  Another
additional input variable in pldt is the symbol type used on top of the vertical signal sample
lines.  The symbol size is set to 2*lw in the first script statment in pldt.  It can be changed
by editing this statement (see the help statements in pldt).

Before using the plotting function pldt, we must create the function
stemm(x,y,symtype,linetype) by modifying the function stem(x,y,linetype) located in
directory c:\matlab\toolbox\matlab\plotxy.  The required modifications are shown in the
help statements in pldt.  They change the function stem so that different top-of-line
symbols can be specified.  The function stemm is located in file stemm.m available in
“Signal and System Analysis Functions - Carlson” in this FTP Archive.

2.1.2.3  Multiple Plots

We can plot two or more functions of the same independent variable on the same set of
axes by using plct and/or pldt.  All that is required is that we remain in the same Figure
Window, use the same vectors for xg, yg, and p in all plotting statements, and include the
statements hold on and hold off after the first and last plotting statements, respectively.

If we want to construct two or more different plots in the same Figure Window, then
we must specify a different location and size vector for each plot.  These vectors must be
chosen so that the plots do not overlap.

Finally, if we want to place our plots on different pages when we print them, then we
must place them in different Figure Windows.  This is accomplished by placing the
command figure between the plot statements.  We did this in the plsig.m script that we
showed in Section 1.9.1.

2.1.2.4  Plotting Examples

The plotting function plct is used in many MATLAB examples in “Signal and Linear
System Analysis”.  Example 2.1 is the first example in which plct is used.  The script given
there illustrates the script required to produce continuous-variable plots.  Both multiple
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plots on one set of axes and multiple, different-axes plots on one page are illustrated in
this example.  Also illustrated is the use of the text function to label individual curves. 
With this function, we specify the text for each label and the corresponding label location,
in axis coordinates.  Note that the location specified is the left center of the text printed. 
Example 6.17 is the first example in which we set axs to something other than 0 so that a
non-linear axis scale is produced.  In this example, axs=1 and a logarithmic horizontal
scale is produced.  Note that the horizontal separation of grid lines specified by the a
vector cannot use the simple colon notation.  This is true since the grid separation
increment is not constant.

Example 2.10 is the first example in which the discrete-variable plotting function is
used.  The plots in this example illustrate the use of several different top-of-line symbols to
distinguish the different signal plots.  In producing these plots, pldt was edited to change
the first statement from ss=2*lw to ss=6*lw.  This produces top-of-line symbols that are
large enough to permit us to distinguish different symbol types.

2.1.3  Continuous-Time Fourier Series and Fourier Transform Functions

We have created four functions for use in performing Fourier analyses of continuous-
time signals.  The first function computes Fourier series coefficients from sample values of
a continuous-time signal.  The second function computes samples of the truncated Fourier
series approximation to a signal over a specified time interval.  The last two functions
compute the Fourier transform and the inverse Fourier transform, respectively.

2.1.3.1  Fourier Series Coefficients

The function

[Xn,no,fo]=ctfsc(t,x,plt,ev,a,bm,ba,YL1,YL2,YL3)

computes the Fourier series expansion coefficients Xn corresponding to the portion of the
signal x within the expansion interval t(1)-dt/2 to t(ns)+dt/2.  This interval has length
ns*dt where ns=size(t,2) is the number of signal samples and dt is the time interval
between samples.

There are ns Fourier series coefficients computed and the frequency interval between
these is fo=1/(ns*dt).  Series coefficients are computed for both positive and negative
frequencies and the coefficient X0 corresponding to f = 0 is stored in Xn(no).  The values
of both no and fo are function outputs along with Xn.

The Fourier series expansion interval can begin anywhere between -10*(ns*dt) to
10(ns*dt).  These limits can be changed, if required, as indicated in the help statements in
the function m-file, ctfsc.m.
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If desired, we can plot the Fourier series coefficient amplitudes and angles as a
function of frequency f.  The plot is enabled by setting plt=1.  If the signal is real and even,
then the series coefficients are real and even.  In this case, the Fourier series coefficients
can be plotted rather that their amplitudes and angles, if desired.  This plotting format is
used if we set variable ev equal to one.  Vectors a, bm, and ba specify the plotting
interval and grid line spacing for the horizontal (frequency) axis, the coefficient amplitude
or total coefficient axis, and the coefficient angle axis, respectively.  We use the final three
input variables to specify the vertical axis labels for the total coefficient, coefficient
amplitude, and coefficient angle axes, respectively.  For example, if the signal is y(t), then
YL1='Xn', YL2='|Xn|', and YL3='arg(Xn)'.  No input variables are provided to specify plot
locations or sizes.  If these must be changed, then we need to edit the appropriate p vector
in the pldt statements in m-file ctfsc.m.

The first example in “Signal and Linear System Analysis” using the function ctfsc is
Example 5.3.  No coefficient plots are made so all variables after plt are arbitrarily set to
zero.  The first example for which coefficient plots are made is Example 5.8.

2.1.3.2  Truncated Fourier Series

The second Fourier series related function is

[xfs,Xnn]=ctfs(t,x,Xn,no,fo,N,plt,os,a,b,p,YL)

This function first selects the 2N + 1 Fourier series coefficients, Xnn, centered on X0,
where N is specified with the input variable N.  Then the function computes samples,
xfs,of the truncated Fourier series approximation of x over the time interval specified by
the input variable t.  The time interval does not need to be the same time interval as the
expansion interval used to compute the Fourier series coefficients.  This fact is illustrated
in Example 5.3, which is the first example using ctfs in “Signal and Linear System
Analysis”.

The input variables Xn, no, and fo are the output variables obtained from function
ctfsc.  The remaining input variables, x, plt, os, a, b, p, and YL, are used if we want to
plot the truncated Fourier series.  The plot is enabled if variable plt is set equal to one. 
Vectors a and b specify the plotting interval and grid line spacing for the horizontal (time)
axis, and the vertical axis, respectively.  Vector p specifies the plot location and size in the
same way that it does for the function plct.  The input variable YL specifies the vertical
axis label.  Suppose that, for comparison purposes, we want to display a dashed line plot
of the original signal from which the Fourier series expansion was computed.  To do this,
we set os=1 and vector x equal to the original signal (see Example 5.3).
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2.1.3.3  Fourier Transform

The function

[f,X,N,no]=ctft(t,x,dfm,plt,ev,a,bm,pm,ba,pa,YL1,YL2,YL3)

computes the Fourier transform of the portion of the signal x contained in the interval 
t(1)-dt/2 to t(ns)+dt/2. This interval has length ns*dt where ns=size(x,2) is the number of
signal samples and dt is the time interval between samples.  The signal portion used must
begin at t(1)<=0 and end at t(ns)>0.  If the signal is longer than the time interval ns*dt,
then the computed transform will have some distortion since it is the transform of a
truncated signal.  

There are N Fourier transform samples computed, where N equals the larger of
ceil(1/(dfm*dt)) or 2*ns.  The variable dfm is the maximum spacing that we allow
between computed transform samples.  Note that care must be exercised in selecting dfm
and dt since N can become very large if they are chosen to be quite small.  Transform
samples are computed for both positive and negative frequencies with a spacing of
df=1/(N*dt).   The transform value at f=0 is stored in X(no).  The frequencies at the
transform sample points are stored in the output vector f.

If desired, we can plot the amplitude and angle of the Fourier transform, or, if the
signal is real and even, the Fourier transform.  The plot is enabled by setting plt=1. 
Variables ev, YL1, YL2, and YL3, and vectors a, bm, and ba perform the same functions
as they do in the Fourier series coefficient function (see Section 2.1.3.1).  We specifiy the
amplitude (or transform) and angle plot locations and sizes with input vectors pm and pa
respectively.

The function ctft is first used in Example 5.11 in “Signal and Linear System Analysis”.
 This example illustrates the script required to use ctft.

2.1.3.4  Inverse Fourier Transform

The function

[t,x,N]=ctift(f,X,dtm,plt,cc,a,bm,pm,ba,pa,YL1,YL2,YL3)

computes the inverse x of the Fourier transform X.  The input vector f specifies the
frequency interval and sample spacing for the input Fourier transform vector X.  These
input vectors are outputs of function ctft.  The number of transform samples is
ns=size(X,2) and the number of inverse transform samples computed, N, is the larger of
ceil(1/(dtm*df)) or ns.  The variable df is the spacing between transform samples and the
input variable dtm specifies the maximum spacing that we allow between computed
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inverse transform samples.  As for the Fourier transform, we must exercise care in
selecting the variables df and dtm so that N does not become excessively large.

The remaining input variables are all associated with the plot that is generated if plt=1.
 These are the same variables used in the Fourier transform (See Section 2.1.3.3) except
that cc replaces ev.  The variable cc performs the same plot type selection function that
ev does.  We set it equal to one when the transform values have the complex conjugate
symmetry X(-f)=X*(f) because the inverse transform is real in this case.

The function ctift is discussed prior to Example 5.11 and first used in Example 5.12 in
“Signal and Linear System Analysis”.  In Example 5.12, a transform generated by ctft is
inverted to show that the transformed signal is recovered.  Also, the result of truncating
the transform is shown.

2.1.4  Discrete-Time Fourier Series and Fourier Transform Functions

We have also developed four functions to be used in performing Fourier analyses of
discrete-time signals.  The first function computes discrete-time Fourier series coefficients
corresponding to an interval of a discrete-time signal.  The second function computes
samples of the discrete-time Fourier series representation of a discrete-time signal over a
specified time interval.  The last two functions compute the discrete-time Fourier
transform and inverse discrete-time Fourier transform, respectively.  All four functions are
equivalent to those developed for continuous-time signals and discussed in Section 2.1.3. 
We will only discuss differences here.

2.1.4.1  Discrete-Time Fourier Series Coefficients

We use the function

[Xm,mo,ro]=dtfsc(n,x,T,plt,nf,ev,a,bm,ba,YL1,YL2,YL3)

to compute discrete-time Fourier Series expansion coefficients Xm.  These coefficients
correspond to the portion of the discrete-time-signal x within the expansion interval
specified by the signal sample index vector n.  There are ns=size(n,2) discrete-time
Fourier series coefficients computed and the normalized frequency between them is
ro=1/ns.  Series coefficients are computed for both positive and negative frequencies and
the coefficient X0 corresponding to r = 0 is stored in Xm(mo).  The values of ro and mo
are function outputs along with Xm.

The discrete-time Fourier transform interval can begin anywhere between -10*ns and
10*ns.  These limits can be changed, if desired, by making the script changes specified in
the help statements in the function m-file dtfsc.m.
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The discrete-time Fourier series coefficient amplitudes and angles or, if possible, the
coefficients themselves can be plotted by setting the input variable plt equal to 1.  We can
generate the plots as a function of normalized frequency, r, by setting input variable nf
equal to one.  If we set nf equal to any other value, plots versus the frequency f are
produced.  The input variable T specifies the discrete-time signal sample spacing.  It is
only used to determine the correct spacing between the discrete-time Fourier series
coefficient when they are plotted versus the frequency f.

All remaining input variables for the function dtfsc control plot characteristics and are
the same as those we defined for function ctfsc (see Section 2.1.3.1).  The first example in
“Signal and Linear System Analysis” that uses the function dtfsc is Example 12.3.  We
make no coefficient plots in this example so all variables after the plot variable are
arbitrarily set to zero.  The first example in which we make coefficient plots is Example
12.7.

2.1.4.2  Discrete-Time Fourier Series

The function

[xfs,Xmm]=dtfs(n,x,T,Xm,mo,ro,N,plt,os,a,b,p,YL)

computes the discrete-time signal values xfs that correspond to the discrete-time Fourier
series coefficients Xm.  Computations are made for the time interval specified by the input
sample index vector n and the input sample spacing T.  This interval does not need to be
the same as the expansion interval used to generate the coefficients.  This fact is illustrated
in Example 12.3 in “Signal and Linear Systems Analysis”, which is the first example that
uses dtfs.

The input variables Xm, mo, and ro are the output variables obtained from function
dtfsc.  All discrete-time Fourier series coefficients are used to obtain the discrete-time
Fourier series values if the input variable N is selected so that 2*N+1 is greater than or
equal to ns=size(Xm,2).  Otherwise, the set of coefficients is truncated to include only
2*N+1 coefficients centered on r=0.    In this case, the discrete-time Fourier series is only
an approximation to the original discrete-time signal (see discussion and plot following
Example 12.3).

All the remaining input variables are used only if we plot the discrete-time Fourier
series.  They are the same as those defined for ctfs (see Section 2.1.3.2).

2.1.4.3  Discrete-Time Fourier Transform

The function

[f,X,N,no]=dtft(n,x,T,dfm,ev,nf,a,bm,pm,ba,pa,YL1,YL2,YL3)
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computes the discrete-time Fourier transform of the portion of the discrete-time signal x
that is contained in the interval specified by the sample index vector n.  The signal portion
must begin at n(1)<=0 and end at n(size(n,2))>0.  The spacing between signal sample
values is specified by the input variable T.  The input variable nf specifies if the plot is to
be generated in terms of normalized frequency (nf equal to one) or frequency (nf equal to
any other value).

The remaining input variables and all output variables are identical to those for the
function ctft.  Refer to Section 2.1.3.3 (replacing dt with T) for a discussion of them.  The
function dtft is first used in Example 12.13.

2.1.4.4  Inverse Discrete-Time Fourier Transform

The last function that we have created for the discrete-time Fourier analysis of
discrete-time signals is

[n,x,T]=dtift(f,X,plt,cc,seq,a,bm,pm,ba,pa,YL1,YL2,YL3)

This function computes the inverse x of the discrete-time Fourier transform X.  The input
vector f specifies the frequency interval and sample spacing for the input discrete-time
Fourier transform vector X.  These input vectors are the outputs of function dtft and
encompass a frequency interval of length 1/T.  The transform and inverse transform both
contain ns=size(X,2) samples.  The internal function variable df is the transform sample
spacing.  The sample index and the spacing between the inverse transform samples
(discrete-time signal) are the output vector n and the output variable T, respectively.

The input variables in addition to f and X are the same for those for the function ctift
except that dtm is replaced by seq.  The variable dtm is not needed since the signal
sample spacing is not selectable but is T=1/(ns*df).  A sequence is plotted (versus n) if
seq=1; otherwise, a discrete-time signal (versus t) is plotted.  All other input variables
select plot characteristics.  They are defined in Sections 2.1.3.1, 2.1.3.3, and 2.1.3.4. 

The function dtift is first used in Example 12.13 in “Signal and Linear System
Analysis”.  The example illustrates that the discrete-time signal is recovered from its
discrete-time Fourier transform.

2.1.5  Straight-Line Approximate Bode Plot Functions

Straight-line approximations to Bode amplitude response and Bode phase response
plots are convenient in continuous-time system analyses.  We have created the two
functions, sysdat, and slbode to compute the parameters for the straight-time
approximations and the straight-time approximation data, respectively.  The location of
system zeros is not restricted.  The functions are capable of finding the parameters and
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straight-line data for causal, stable systems (poles only in the LHP) and non-causal, stable
systems (poles in both the LHP and RHP).  Also, results for marginally stable systems can
be obtained.  These results are valid for input signals that do not contain poles located at
single-order system poles on the imaginary axis.

The first example that uses the Bode plot functions in “Signal and Linear System
Analysis” is Example 6.17.  The frequency response in this example contains three
numerator factors and three denominator factors.

2.1.5.1  Transfer Function Parameter Computation

The function

[rn,rd,imas,rhps,c,bf,ex,dr]=sysdat(n,d)

computes transfer functions, or frequency response, factor parameters for a system having
the transfer function

H(s)=[n(1)sα+...+n(α)s+n(α+1)] / [d(1)sβ+...+d(β)s+d(β+1)]

or frequency response

Hω(ω)=[n(1)(jω)α+...+n(α)(jω)+n(α+1)] / [d(1)(jω)β+...+d(β)(jω)+d(β+1)]

The numerator and the denominator coefficients are stored in the input vectors n and d,
respectively.  Function outputs include:

rn = roots of the numerator (system zeros),

rd = roots of the denominator (system poles),

imas = two-element row-vector containing the number of zeros and number of
poles on the imaginary axis,

rhps = two-element row-vector containing the number of zeros and number of
poles in the right-half plane,

c = constant multiplicative factor  c=n(i)/d(j), where i and j are the largest
integers for which n(i) and d(j) are not equal to zero,

bf = a row-vector that contains the break frequency for each function where,
for linear factors, bf>0, bf=0, and bf<0 indicate LHP, Imaginary Axis,
and RHP plane poles or zeros, respectively,
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ex = a row-vector of factor exponents where +1 and +2  correspond to
numerator linear and quadratic factors, respectively, and -1 and -2
correspond to denominator linear and quadratic factors, respectively,

dr = a row-vector of factor damping ratios.

A damping ratio only applies to a quadratic factor and is a number greater than zero
but less than one.  We set dr(i) equal to 10 for factor i as an indicator that factor i is  a
linear or jω factor.  Quadratic factors that correspond to LHP, Imaginary Axis, and RHP
poles are indicated with positive, zero, and negative damping ratios, respectively.

2.1.5.2  Straight-Line Data Computation

We compute the straight-line Bode plot approximation data with the function

[am,ph]=slbode(w,c,bf,ex,dr)

The input variables include vector w defining the frequency interval and increment for
which the data are computed.  The other input variables are the frequency response factor
parameters computed with function sysdat.  These are defined in Section 2.1.5.1.

The output variables are the vectors am and ph.  These vectors contain the data for
the straight-line approximations to the amplitude-response and phase-response Bode plots,
respectively.

2.1.6  Pole-Zero Plotting Function

There are pole-zero plotting functions available in the MATLAB Signal Processing
and Control Systems toolboxes.  We have created an additional poles-zero plotting
function to provide additional flexibility in plot generation.  The function is

. [z,p,k]=pzp1(form,a,b,po,amv,grs,tl,gr)

The input vectors a and b specify the transfer function numerator and denominator
coefficients, respectively, if form is specified as ‘tf’.  On the other hand, if form is
specified as ‘pz’, then the vectors a and b specify the transfer function zero and pole
locations, respectively.

The input vector po specifies the plot location and size (see help statements in file
pzpl.m).  All locations and sizes are specified in terms of fractions of the Figure Window
dimensions.  A square plot is produced even if the vector elements po(3) and po(4) are not
equal.  They should be set equal to produce an easily predictable plot size.   
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The input variable amv specifies the maximum absolute value plotted on both the
horizontal and vertical (real and imaginary) axes.  That is, plot scales extend from -amv to
+amv on both axes.

The input variables grs, tl, and gr control the characteristics of the plot grid.  Variable
grs specifies the grid line or tick mark spacing.  Dotted grid lines are produced if gr is set
equal to one.  Otherwise, only tick marks are produced.  The variable tl is used to
suppress the grid line or tick mark labels if it is set equal to zero.  Otherwise, grid labeling
is produced.

In addition to the pole-zero plot, function outputs include the zeros, vector z, the
poles, vector p, and the transfer function multiplicative constant, variable k.  The variable
k is set equal to one if zeros and poles are supplied in the input.

The first example that uses function pzpl in “Signal and Linear System Analysis” is
Example 7.20.  Other examples in which it is used include Example 8.4 and 14.23.  In
Example 14.23, we add the unit circle to the pole-zero plot since the unit circle is an
important feature in the z-plane.

2.1.7  Butterworth and Chebyshev Filter Order Selection Function

The last function created for signal and system analysis is

[n,wss]=abcord(type,pband,wc,ws,gs,dBwrmg,maxg,rdB)

We use this function to determine the Butterworth or Chebyshev filter order required to
produce desired stopband gain characteristics.  The low-pass filter (LPF) order is selected
to produce filter stopband gain that is less than or equal to gain gs at frequency ws.  The
stopband frequency ws is larger than the cutoff frequency wc.  For the high-pass filter
(HPS), the frequency ws is in the stopband located at a frequency less than the cutoff
frequency wc. 

Two specified cutoff and stopband frequencies are required for band-pass (BPF) and
band-reject (BRF) filters.  Thus, for these filter types, wc and ws are two element row
vectors.  If the filter is a BPF, then the specified stopband frequencies are above and
below the filter passband defined by the upper and lower cutoff frequencies.  On the other
hand, the specified stopband frequencies are in the stopband between the upper and lower
cutoff frequencies for a BRF. 

We specify whether we are using a Butterworth or Chebyshev filter by setting the
input variable type equal to 'b' or 'c', respectively.  The filter passband characteristic is
specified with the input variable pband.  We use the values 'lp', 'hp', 'bp', or 'br' for the
input variable pband to specify a LPF, HPF, BPF, or BRF, respectively.
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The stopband gain gs can be specified either as a numerical gain value or as gain in dB
with respect to the maximum filter gain.  We set the input variable dBwrmg equal to 'n' or
'y' to indicate whether we are using the first or second type of stopband gain specification,
respectively.  If we are using the first type (that is, numerical gain), then we set the input
variable maxg equal to the filter maximum gain.  Otherwise, we set it to an arbitrary
number since it is not used. 

The final input variable is rdB.  We use this variable to specify the passband ripple in
dB for a Chebyshev filter.

The outputs of the function abcord are the filter order n and the scaled stopband
frequencies wss.  The scaled stopband frequencies are those used in abcord to select the
filter order from the normalized LPF prototype data.

The function abcord is first used in Examples 8.8, 8.9, and 8.10 in “Signal and Linear
System Analysis”.  These examples illustrate low-pass and high-pass filter design.  We also
use it in Example 15.11 to produce a discrete-time filter design.

2.2  Techniques and Functions Used in Text Examples

In Section 1.0, we presented basic MATLAB statement and format characteristics,
operations, and functions that we use in MATLAB script to perform analyses.  In
addition, in Section 2.1, we described sixteen function m-files that we created specifically
for signal and system analyses.  We use other MATLAB functions and various
programming techniques in the 76 MATLAB examples in the text “Signal and Linear
System Analysis”.  In this section, we discuss other functions used and those techniques
which may not be directly obvious to the student.  We reference the functions and
techniques to the first example in which they are used to illustrate the script required to
utilize them.  The order in which the functions and techniques are discussed is the order in
which they appear in the text.  Thus, the discussion is organized by example number.  All
examples are not mentioned since many only use techniques and functions that have
already been used in earlier examples.  We have already mentioned  the first example in
which the created signal and system analysis functions are used.  We will not repeat these
references here.

The text is divided into three parts.  These are: Part I  -  Fundamental Concepts, Part
II -  Continuous-Time Signals and Systems, and Part III  -  Discrete-Time Signals and
Systems.  We discuss examples in each part in a separate section.  More examples are
discussed in the earlier chapters than in the later chapters since the functions and
techniques used are cumulative.
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2.2.1  Part I  -  Fundamental Concepts

Part I of  “Signal and Linear System Analysis” contains Chapters 1 and 2.  MATLAB
is first used in Chapter 2 where evaluation and plotting of both continuous-time and
discrete-time signals are the first tasks performed.

In Example 2.5, we demonstrate how to use a 0-1 array to generate a one-dimensional
array of constants, hm, having the same size as the variable array t.  This permits us to use
an array operation rather than a for loop to compute the signal values y.

Example 2.10 utilizes a large set of nested for loops to compute several signals.  The
script to do this can be greatly simplified and looks more like the defined signal
expressions if we use the sum function.  This requires setting up the appropriate variable
arrays using meshgrid (see  Section 1.8.1) so that we can use the array operations.  It
also makes the computation faster; however, since so few points are computed, the speed
advantage is not very significant.  For those who want to pursue the array operations
approach, the appropriate script is included as file e210ao.m in the “Text Example and
Data Files - Carlson” section in the FTP archive.  The meshgrid function statements are
annotated to aid understanding of the arrays created.

2.2.2  Part II  -  Continuous-Time Signals and Systems

Chapters 3 through 9 are contained in Part II of “Signal and Linear System Analysis”. 
Example 3.6 illustrates the use of step and ramp signal generation functions, us.m and
ur.m, in the generation of a piecewise defined signal.

In Example 3.11, we use the numerical integration function quad8('e311x',0,0.5) to
integrate the signal defined by the functions x=e311x(t).  Integration is performed over the
interval from t=0 to t=0.5.  The function quad8 is a function function.  It operates on a
specified MATLAB function (e311x in this case) rather than on variable arrays.  Iteration
is used until the relative  error is less than a specified value (default value = 0.001).  If this
relative error is not achieved in 10 iterations, a warning message is printed and the
computation proceeds using the value obtained.

Example 4.4 also uses quad 8.  In this case, the integrand function e44ig is a function
of the variable x and t.  Integration is performed over the variable x and a value of the
variable t, t(n), is used in the integration.  This example shows that the value of the
variable t is included by using six input variables where the sixth input variable is t(n).  The
fourth and fifth variables must be specified if we want to specify the sixth variable.  These
variables are the specified relative error and a plot selecting variable, respectively.  We set
them to 0.001 and 0 to produce the default relative error value and no plot.

A simple method for performing numerical integration used the trapezoidal integration
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rule.  This is illustrated in Example 3.12.
The function conv is designed to perform the discrete-time convolution sum (see

Example 11.11).  However, by using eq. 4.27 in the text, we can use conv to compute an
approximation to the continuous-time convolution integral.  This is illustrated in Example
4.10.  The function conv can also be used to find the polynomial coefficients of a product
of two polynomials  For example, the coefficients for the polynomial product

(2x2 + 5x - 3)(4x2 - 10x + 6) = 8x4 - 50x2 + 60x - 18

are obtained as follows:

>>   a=[2  5  -3];  b=[4  -10  6];  c=conv(a,b)
c =

  8   0   -50   60   -18

The angle (A) function finds the principal angle corresponding to each element of the 
array A.  That is, it finds angles between -π and +π radians.  Many times a plot of the
angle is easier to interpret if we plot angles that extend to less than -π radians, or greater
than +π radians.  We can do this by removing the +2π and -2π jumps that occur in the
principal angle plot.  These jumps occur when the angle passes -nπ and +nπ in the
negative and positive directions, respectively, where n is an odd integer.  The MATLAB
function unwrap removes these ±2π jumps.  The unwrap starts with the first value in the
angle vector.  Thus unwrap cannot correct for a net jump of ±m2π from f = f(1) to f = 0,
where m is an integer.  we can remove this uncorrected net jump by adding or subtracting
the multiple of 2π that will make the unwrapped phase angle equal to the principal phase
angle at f = 0.  The function unwrap is first used in Example 5.11 where 2π is subtracted
so angles match at f = 0. 

In Example 6.17, we introduce the function h=freqs(n,d,w) found in the Signal
Processing and Signal and System toolboxes.  This function produces the system
frequency response values h for the frequency interval w, where w is specified in
radians/second.  The system parameter inputs are the numerator, n, and denominator, d,
coefficients of the system transfer function (ratio of polynomials in s) or the system
frequency response (ratio of polynomials in jw).  If we want to generate frequency
response values corresponding to the frequency interval vector f in Hertz, then we replace
w by 2*π*f in the input variables.

The first three MATLAB examples in Chapter 7 (Examples 7.5, 7.9, and 7.15) use the
Symbolic Math Toolbox to find Laplace transform and inverse Laplace transform
expressions.  The Symbolic Math notation Heaviside(t) is introduced for a unit step
function and used in all three examples.  The Laplace transform laplace and inverse
Laplace transform invlaplace functions often produce unnecessarily complicated results. 
These results can sometimes be simplified with the simplify command.  We find that the
laplace and invlaplace functions cannot compute Laplace transform and inverse Laplace
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transform expressions for arbitrary Laplace transformable functions.  Thus, their utility is
limited.

Sometimes we want to evaluate a Symbolic-Math-produced mathematical expression 
for values of the independent variable.  This is done with the eval function, as illustrated in
Example 7.15.  Evaluation is only possible if all terms and operations in the Symbolic
Math expression correspond to defined terms and operations.  Replacements can be made
if necessary.  For example, Heaviside is replace with us in Example 7.15 since a non-
symbolic expression does not recognize the Heaviside function but does recognize the us
function as a representation of a unit step.  Likewise, all multiplications in Symbolic Math
are represented by *.  Since we want array operations in Example 7.15, we replace * with
.*.  The function that provides the substitution capability is strrep and its use is illustrated
in Example 7.15.

We use partial fraction expansion in the determination of inverse Laplace transforms
and inverse z-transforms of rational functions.  The function [r,p,k]=residue(n,d,)
computes the partial fraction expansion coefficients r corresponding to the poles p of a
rational transform.  The function inputs are the numerator and denominator coefficients
specified by the one-dimensional row-arrays n and d.  The partial fraction expansion
coefficients and pole values are function outputs and are contained in one-dimensional
column-arrays.  If the rational function specified by n and d is proper, the output one-
dimensional row-array k is empty.  Otherwise it contains the coefficient of the powers of s
or z that we obtain when we divide the rational function to produce a rational remainder. 
Example 7.25 is the first example in which we use the function residue.

We can use the function

[z,p k]=tf2zp(n,d)

found in the Control System Toolbox, to find the zeros z, poles p, and multiplicative
constant k (called gain) corresponding to a rational Laplace transform or z-transform. The
zero and pole values are placed in one-dimensional column arrays.  The coefficients of the
transform numerator and denominator are supplied by the input one-dimensional row-
arrays n and d.  The degree of the numerator must be less than or equal to the degree of
the denominator.

The gain is the ratio of the coefficients of the highest degree numerator and
denominator terms.  Together, the gain, zeros, and poles specify the transform completely.
 Thus, the transform can be obtained from the zeros, poles, and gain with the inverse
function

[n,d]=zp2tf(z,p,k)

The functions tf2zp and zp2tf are first used in Example 8.3.

The functions tf2zp and zp2tf can be used for multiple transforms having the same
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denominator.  In this case, n is a matrix with rows corresponding to the numerator
coefficients for each transform and z is an array having columns that correspond to each of
the numerator polynomials.  The gain variable k is a one-dimensional column-array
containing the gain factors corresponding to each transform.

The Signal Processing and Signal and System Toolboxes contain functions that
produce Butterworth and Chebyshev filter designs.  The designs are in terms of transfer
function numerator coefficients nu and denominator coefficients de.  The functions for
continuous-time filter design are

[nu,de]=butter(n,Wn,'ftype','s')
and

[nu,de]=cheby1(n,Rp,Wn,'ftype','s')

The input variables n and Rp are the filter order and the Chebyshev filter passband gain
ripple in dB, respectively.  The input Wn specifies the filter cutoff frequency, or
frequencies.  If a single value is supplied, then either a low-pass filter or a high-pass filter
is designed.  The filter is a low-pass filter if variable 'ftype' is left out and a high-pass filter
if 'ftype' is set equal to 'high'.  If a two element row array is supplied for Wn, then either a
band-pass filter or a band-reject filter is designed.  The filter is band-pass if 'ftype' is left
out and band-reject if 'ftype' is set equal to 'stop'.  Illustrations of using butter and
cheby1 in continuous-time filter design are shown in Examples 8.4, 8.5, 8.8, 8.9, and
8.10.  Note that computer imprecision causes unwanted small coefficients in the
numerator (See Example 8.5, 8.8, 8.9,and 8.10 for discussion).

If the input variable 's' is left out, then butter and cheby1 design discrete-time filters
instead of continuous-time filters.  The technique used is the bilinear tranformation design
technique discussed in Section 15.3 in “Signal and Linear System Analysis”.  We illustrate
this use of the filter design functions in Example 15.11.

We have only discussed the design of Type I Chebyshev filters.  Type II filters have
equal ripple in the stopband instead of the passband, and can be designed using the
function cheby2.

In Example 9.2, we use the meshgrid - sum combination of functions so that we can
avoid a for loop and use array operations to increase computation speed.  This illustrates
the use of this combination of functions which we first discussed in Section 1.7.1.

2.2.3  Part III  -  Discrete-Time Signals and Systems

Chapters 10 through 16 are contained in Part III of “Signal and Linear System
Analysis”.  Only a few examples in this part contain functions or techniques that we have
not already discussed in Sections 2.2.1 and 2.2.2 or in the System and Signal Analysis
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Functions section (Section 2.1).

Examples 13.3 and 13.5 illustrate the use of the save and load commands in saving
data to a mat file and then reloading and using it later.  If you do not recall the names of
the variables saved in a mat file, you can load the file in a cleared Workspace and then
use the whos command to display the Workspace contents.

In Examples 14.4, 14.6, and 14.10, we use Symbolic Math to perform z-transforms. 
We also evaluate Symbolic Math produced expressions for values of the independent
variable.  All of these operations parallel those that we used for continuous-time signals
and Laplace transforms in Examples 7.5, 7.9, and 7.15.  See the discussion for these
examples in Section 2.2.2.  One anomaly occurs in Examples 14.6.  The anomaly is that
the MATLAB symbolic z-tranform will not compute the transform of a step function
(Heaviside function) if it is multiplied by a non-integer constant.  This problem was
avoided in Example 14.6 by first finding the transform of K*Heaviside(t) and then
substituting the numerical value for K.

The final pair of function that we consider are the fft and ifft functions.  These
functions compute the Discrete Fourier Transform (DFT) and inverse Discrete Fourier
Transform (IDFT) using the Fast Fourier Transform (FFT) algorithm.  They are very
important for signal and system analysis.  The greatest computation speed is achieved if
the number of signal or transform points used is a power of two.  Computation speed is
still quite good if the number of points factors into a large number of prime factors.  The
slowest computation speed occurs when the number of points is a prime number.  For
example, 0.05, 0.16, 0.71, and 10.77 seconds are required to compute the FFT of an
exponential if 4096, 4095, 4097, and 4099 points are used, respectively.  The time was
measured using the tic and toc functions and 4096, 4095, 4097, and 4099 have 12, 5, 2,
and 1 prime factors respectively.  Note that 4096 is a power of 2 and 4099 is a prime
number.

Computation speed is not usually a problem unless a large number of points is used or
 we need to compute many transforms.  In these cases, we can usually change the number
of points by a just a few points to obtain more prime factors, if the original number of
points has only a few prime factors.  The prime factors R of the number N are obtained by
using the function R=factor(N).  This function is located in the Symbolic Math Toolbox.

The fft and ifft functions are first used in Example 16.2.  They are also used in a
number of additional examples following Example 16.2.


