4.5 A discrete-time signal x[n] has DTFT $X(\Omega) = \frac{1}{e^{j\Omega} + b}$

where b is an arbitrary constant. Determine the DTFT $V(\Omega)$ of the following:

- (a) v[n] = x[n-5]
- (g) $v[n] = x^2[n]$
- **(h)** $v[n] = x[n]e^{j2n}$
- a) From Table 4.2, use time shift property $X[n-2] \iff X(\Lambda) e^{-j2\pi} q = integer$ $V(\Lambda) = X(\Lambda) e^{-j5\Lambda}$ $V(\Lambda) = \frac{1}{e^{j\Lambda} + b} e^{-j5\Lambda}$
- 9) From Table 4.2, use the "Multiplication in the time-domain" property $x [n] v [n] \longleftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} x (n-1) v(1) dx$ $V(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{e^{i(x-1)} + b} \left(\frac{1}{e^{i\lambda} + b} \right) dx$ $V(x) = \frac{1}{e^{ix} b^2} \infty excep$ $V(x) = \frac{1}{e^{ix} b^2} \infty excep$

Alt. approach,
$$X(x) = \frac{1}{e^{j}n_{+}h} = \left(\frac{1}{1+be^{-j}n_{+}}\right)e^{-jn_{+}}$$

From Table 4.1, $a''u''_{1} \iff \frac{1}{1-ae^{-jn_{+}}}$ where $a = -b$

From Tuble 4.2, $x(n-2] \iff x(n)e^{-j2n_{+}}$ where $2 = 1$

So, $x(n) = (-b)^{n-1}u(n-1)$ and $x^{2}(n) = (-b)^{n-1}u(n-1)(-b)^{n-1}u(n-1)$

Using the above $w(a) = b^{2} + 2 = 1$
 $V(n) = \frac{1}{1-b^{2}e^{-jn_{+}}}\left(e^{-jn_{+}}\right) = \frac{1}{e^{+jn_{+}}b^{2}} - \infty cnc \infty$

h) For $V[n] = X[n] e^{i2n}$, use the Table 4.2

property 'Multiplication by a complex

exponential' $X[n]e^{inno} \Longrightarrow X(x-n_0)$ w/ $x_0 = 2$ $V(x) = \frac{1}{e^{i(x-2)} + b} - \infty e^{-x_0}$