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2.26 Consider the following differential equation:

d? d
;t(zt) 4 3—%-(;—) +2p(1) =0, y(0)=1, $(0)=0

(a) Solve for y(¢), using the MATLAB Symbolic Math Toolbox.

(b) Using Euler’s approximation of derivatives with 7 arbitrary and input x(¢) arbitrary,
derive a difference equation model. Using the M-file recur with T = 0.4, compute
the approximation to y(z).

(¢) Repeat the numerical approximation in part (b) for 7 = 0.1.

(e) Plot the responses obtained in parts (a), (b} ,and (c) for 0 = ¢ =< 10, and compare
the results.

> without part d. Can analytically solve part a using any method. Use the backward
difference Euler’s approximation in parts b & c¢ and list the 1/O difference equation w/
coefficients evaluated in each case. For part e, plot the analytic result (solid line) from
part a with the numerical results from part b (dots) and then plot parts a (solid line) & ¢
(dots) on a separate plot. Use a legend on the plots.

a) From the MATLAB Command Window (extra blank lines removed for clarity)
>> dsolve('D2y = -3*Dy - 2*y''y(0) = 1, Dy(0) = 0"
ans = 2%*exp(-t)-exp(-2*t)
>> dsolve('D2y = -3*Dy - 2*y','y(0) = 1','Dy(0) = 0")
ans = 2%exp(-t)-exp(-2*t)
Note that the initial conditions are in two formats (see MATLAB help for dsolve). So,
y(t)=2e " —e™ fort>0.

Since x(¢) = 0, this is the natural or unforced solution to the differential equation.

b) Use the backward difference Euler’s approximations

df(f)| zf[n]—f[n—l]amddzf(f) S =2f[n 1]+ f[n—-2]
dt T dt’ T’

|t=nT t=nT

in the above differential equation with arbitrary input x(¢) to get

yn]=2y[n—1]+ y[n—2] 43 y[n]—y[n-1]
T’ T

This can be simplified to the standard difference equation

+2y[n]=x[n].
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2+3T 1 T?
n\l—| —m— n—1+ ——— n—2: — | X| for nZl
Ml (1+3T+21ij[ | (1+3T+27ij[ ] £1+3T+2T2j[ :

or the recursive difference equation

2437 1 T?
n= ——— n-11-| ——— n—2+| —— |x[n ﬁﬂnZl
Al (1+3T+2T2jy[ | (1+3T+270)y[ | £1+3T+]”] L]

with initial conditions
y(0)=1 = »[0]=1

and

dy(?)

» _o = MOI=x0-1 I-H-1f 0 M-1]=1.

y(0) = T T

t=0

With T = 0.4 s, the difference equation is
y[n]-1.27y[n—1]+0.3968y[n —2]=0.0635x[n] for n>1.

c) With T =0.1 s, the difference equation is
V[n]—-1.7424y[n —-1]+0.7576 y[n - 2] = 0.00%x[n] for n>1.

M-file for part b), similar m-file used for part c¢) with variable T = (.1 s and label

changes.
Chapter 2 problem 2.26b (p2 26b.m)

o o°

o\°

For a second-order ordinary differential equation (ODE)
d2y/dt2 + 3dy/dt + 2y = x(t)

o°

% where y(0) =1 & dy(0)/dt = 0 and x(t)=0.
% The ODE has an analytic solution-
% y(t) = 2e”(-t)-e”(-2t).

o°

Find approximate numerical solution by using a backward-difference

o\©

Euler's approximation for derivatives to change it into a
second-order difference equation which can be solved

o\©

o\©

recursively. Compare numerical results with exact solution.

o\©

close all; clear; clc;

tstop = 10; $ How far to go in time in seconds

% *** Backward-difference Euler approximation ***

T = 0.4; % Time step for numerical approximation
al = (=2-3*T) /(1 + 3*T + 2*T*T);

a2 = 1/(1 + 3*T + 2*T*T);

b0 = (T*T)/ (1 + 3*T + 2*T*T);

a=[al, a2]; % [a] coefficient vector for y[] terms

b=[b0];

o

[b] coefficient vector for x[n]
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n = 1l:1:round(tstop/T); % Define index vector for recur ()

x = zeros (1l,length(n)); % input x[n]=0

x0 = [1; yO0=[1,1]; % initial conditions (oldest to youngest)
y = recur(a,b,n,x,x0,y0); % yields output for n=1,2,3,...

yapprox = [y0(2),vy]; n=[0,n]; $ tack on value at t=n=0

o° oP

*** Analytic solution ****
t = 0:0.05:tstop; % Define time steps for analytic sol'n
yexact = 2*exp (-t)-exp(-2*t);

[o)

plot (t,yexact, 'r',n*T, yapprox, 'b.", [0 tstop], [0 0], "k-")
legend (' y {exact} (t) = 2e"{-t} - e”{-2t} t \geq O0',...
[' Bwd-diff. Euler approx. w/ T = ',num2str(T),"' s'],'Location','NE"'),
axis ([0 tstop O 1.11),
ylabel ('y(t)', "fontsize',16, 'fontname', 'times"')
xlabel ('t (s)','fontsize',16, ' 'fontname', '"times"')
title({'Prob 2.26b Second-order ODE ';...
'd*{2}y/dt*2 + 3dy/dt + 2y = 0 w/ y(0)=1 & dy(0)=0"'},...
'fontsize', 16, 'fontname', 'times"')
set (findobj ('type', 'line'), 'linewidth',1.5)
set (findobj ('type', 'line'), 'markersize',14)
set (findobj ('type', 'axes'), 'linewidth', 2)

e) Plots
Prob 2.26b Second-order ODE

d?y/d® + 3dy/dt + 2y = 0 w/ y(0)=1 & dy(0)=0

Yoract) = 26 - 20

®  Bwd-diff. Euler approx. w/ T= 0.4 s []
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Prob 2.26¢ Second-order ODE
d?y/d® + 3dy/dt + 2y = 0 w/ y(0)=1 & dy(0)=0

Yorao) = 26 -e2 20

L] Bwd-diff. Euler approx. w/ T=0.1s I
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t(s)

» Of course, the analytic solution to the ODE is perfect.

» For the backward difference Euler’s approximations to the ODE, the numerical
solution with the smaller step size i1s more accurate.



