2.16 For each of the following difference equations

(iii)
$$y[n + 1] - 0.8y[n] = x[n]$$
 use the method of recursion to solve the following problems:

(a) Compute y[n] for n = 0, 1, 2, when x[n] = 0 for all n and y[-1] = 2.

(b) Compute y[n] for n = 0, 1, 2, when x[n] = u[n] and y[-1] = 0.

(c) Compute y[n] for n = 0, 1, 2, when x[n] = u[n] and y[-1] = 2.

> Do problem manually. [Hint: Exploit time-invariance to re-index I/O difference equation.]

Use time-invariance to re-index the difference equations, i.e., N -> N-1.

$$y[n] - 0.8y[n-1] = x[n-1]$$

 $y[n] = 0.8y[n-1] + x[n-1]$

a) Given
$$\times [n] = 0$$
 and $y[-1] = 2$
 $N = 0$ $y[0] = 0.8y[-1] + 0 = 0.8(2) = 1.6$
 $N = 1$ $y[1] = 0.8y[0] + 0 = 1.28$
 $N = 2$ $y[2] = 0.8y[1] + 0 = 1.024$

6) Given
$$\chi(n) = u(n) + y(-1) = 0$$

 $n = 0$ $y(0) = 0.8 y(-1) + u(-1) = 0$
 $n = 1$ $y(1) = 0.8 y(0) + u(0) = 1$
 $n = 2$ $y(2) = 0.8 y(1) + u(1) = 1.8$

c) Given
$$\chi(n] = u(n)$$
 and $\chi(-1] = 2$
 $N = 0$ $\chi(0) = 0.8 \chi(-1) + u(-1) = 1.6$
 $N = 1$ $\chi(1) = 0.8 \chi(0) + u(0) = 2.28$
 $N = 2$ $\chi(2) = 0.8 \chi(1) + u(1) = 2.824$