1.27 Prove that the following system is linear:

$$y[n] = \sum_{i=0}^{n} a_i x[n-i]$$

where the coefficients a_i are constants.

First, check to see if y[n] is additive:

For input
$$x_1[n]$$
, $y_1[n] = \sum_{i=0}^{n} a_i x_1[n-i]$.
For input $x_2[n]$, $y_2[n] = \sum_{i=0}^{n} a_i x_2[n-i]$.
For input $x_1[n] + x_2[n]$,
 $\tilde{y}[n] = \sum_{i=0}^{n} a_i \left(x_1[n-i] + x_2[n-i] \right) = \sum_{i=0}^{n} a_i x_1[n-i] + a_i x_2[n-i]$
 $= \sum_{i=0}^{n} a_i x_1[n-i] + \sum_{i=0}^{n} a_i x_2[n-i] = y_1[n] + y_2[n]$

 $\Rightarrow \underline{v[n]}$ is additive.

Next, check to see if y[n] is homogeneous:

For input
$$a x[n]$$
, $\tilde{y}[n] = \sum_{i=0}^{n} a_i (a x[n-i]) = a \sum_{i=0}^{n} a_i x[n-i] = a y[n]$.

$$\Rightarrow \underline{y[n] \text{ is homogeneous}}.$$

Since y[n] is additive and homogeneous, the <u>system is linear</u>.