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Discrete Fourier Transform (DFT) Properties 
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Multiplication by complex exponential  2 /
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Multiplication in time-domain   
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Parseval’s theorem     
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Special case of Parseval’s theorem  
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Discrete Fourier Transform (DFT) Notes: 

1) Mod or modulo operation:  DFT is limited to values 0 ≤ n ≤ N-1 (time-domain) and 0 ≤ k ≤ N-1 
(frequency-domain).  When a value (e.g., indices n and k) is outside this range, the mod or modulo 
operation “wraps-around” the value to return it to between 0 and N-1.   

2) How is the mod or modulo operation defined?  For M and N being integers, 
a) Mod(M, N) = remainder of M/N, or, equivalently, 
b) Add/subtract integer multiples of N until the result is within the desired range,  
   i.e., 0 ≤  Mod(M,N) = (M ± l N)  ≤ N-1 
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