EE 313 Signals and Systems (Fall 2024)

Project 2 Fourier Analysis of Systems- AC/DC Rectification, Part B

Introduction

<snip> selected between <snip> half-wave rectifying <snip> and full-wave rectifying circuit <snip>

In Part B of this project, we will explore how to make our choice of rectifying circuit suitable for a DC power supply. An inexpensive and effective option to implement a DC power supply is to add a capacitor C in parallel with the load resistance $R_L < \sin p >$ the capacitor acts as a lowpass filter $< \sin p >$

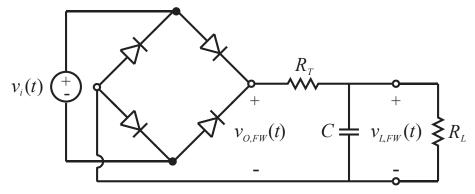


Figure 2 Modified full-wave rectifying circuit with lowpass filtering

Project

Per part A of the project, $v_i(t) = V_m \cos(\omega t)$ w/ $V_m = 176$ V, f = 400 Hz, T = 1/f, $R_T = 4\Omega$, and $R_L = 4\Omega$.

- 1) Based on the type of rectification selected in part A of the project, select $\langle \text{snip} \rangle$ Figure 2 (xx = FW), Then, complete the following:
 - a) Find the general <snip> frequency domain transfer function <snip>, i.e., $H_3(\omega) = \frac{V_{L,xx}(\omega)}{V_{O,xx}(\omega)}$.

The relation between $V_{L,FW}$ and $V_{O,FW}$ is found by simple voltage division in the frequency-domain

$$V_{L,FW}\left(\omega\right) = \frac{\left(\frac{1}{j\omega C} \left\| R_L \right\| \right)}{R_T + \left(\frac{1}{j\omega C} \left\| R_L \right\| \right)} V_{O,FW}\left(\omega\right).$$

After some simplification, the transfer function is found to be:

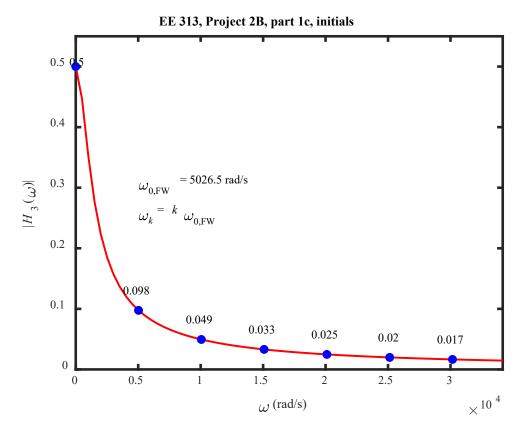
$$H_{3}(\omega) = \frac{V_{L,FW}(\omega)}{V_{O,FW}(\omega)} = \frac{R_{L}}{\left(R_{L} + R_{T}\right) + j\omega R_{L}R_{T}C} = \frac{1}{\left(1 + R_{T} / R_{L}\right) + j\omega R_{T}C} - \infty < \omega < \infty.$$

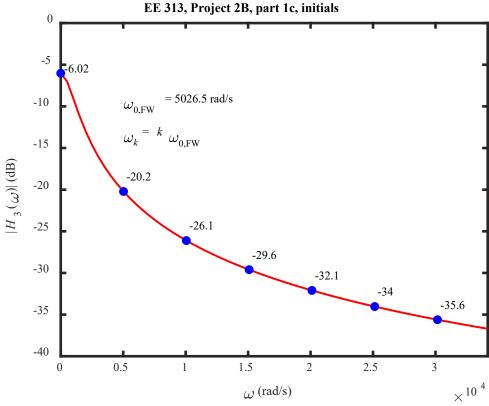
b) Assuming $C = 500 \,\mu\text{F}$ and the given resistor values, find the specific transfer function $H_3(\omega)$.

$$H_{3}(\omega) = \frac{R_{L}}{(R_{L} + R_{T}) + j\omega R_{L}R_{T}C} = \frac{4}{(4+4) + j\omega 4(4)500 \cdot 10^{-6}}$$

$$H_{3}(\omega) = \frac{4}{8 + j\omega 0.008} = \frac{1}{2 + j\omega 0.002} = \frac{0.5}{1 + j\omega 0.001} - \infty < \omega < \infty$$

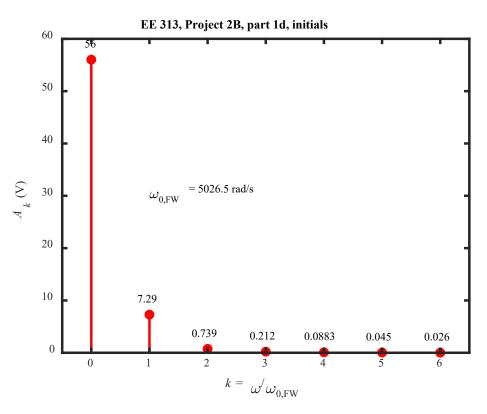
c) $\langle \text{snip} \rangle$ plot $\langle \text{snip} \rangle$ $|H_3(\omega)|$ (unitless, 0 to 0.55 vertical scale) and $|H_3(\omega)|$ (dB, 0 to -40 vertical scale) for $0 \leq \omega \leq 6.8 \omega_{0,\text{FW}}$ (2 plots). Also, evaluate $\langle \text{snip} \rangle$ $H_3(\omega_k)$ for $0 \leq k \leq 6$, and place **labeled** markers (dots) corresponding to $|H_3(\omega_k)|$ on the same plots. Include m-file.

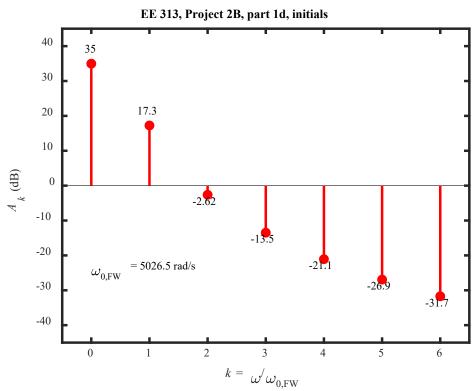




<snip>

d) $\langle \text{snip} \rangle$ create two stem plots of the <u>filtered</u> **amplitude**/ A_k (vertical scale of 0 to 60 V) line spectra for $v_{L,xx}(t)$ versus $\langle \text{snip} \rangle \omega_k$, i.e., $0 \le k \le 6$ with horizontal scale ranging from -0.5 to 6.5 $\langle \text{snip} \rangle$ Next, create a stem plot of the **amplitude**/ A_k line spectra in decibels (-45 \le dB \le 45) with same horizontal scale. For all plots, label all stems. Include m-file(s).





<snip>

e) Estimate the total power $P_{L,FW}$ in the filtered load voltage by adding the power in the dc plus first ten harmonics. For the three largest line spectra, fill-in the table below. What fraction of the total power is contained in these three?

Table 1 Power in three largest line spectra for filtered full-wave rectification

harmonic #	f (Hz)	amplitude (V)	P (W)	% of <i>P</i> _{L,xx}
0	0	56.02254	784.631246	99.151621
1	800	7.287407	6.638287	0.8388615
2	1600	0.739373	0.068334	0.008635

- $ightharpoonup \underline{P_{L,FW}} \cong 791.344849 \text{ W}$ of which the first three account for $\underline{99.999118\%}$.
- 2) Next, we will examine the time-domain filtered load voltage $v_{L,xx}(t)$ assuming $C = 500 \mu F$ and the given resistor values.
 - a) Type out the equation for the trigonometric Fourier series of $v_{L,xx}(t)$. **Instructions:** Separate the dc term from the rest of the summation. For simplicity, you may use $|H_3(k\omega_0)|$ and $\angle H_3(k\omega_0)$ in the summation part (i.e., k = 1, 2, ...) of the expression for $v_{L,xx}(t)$ as long as you reference the equation for $H_3(\omega)$.

We have the Fourier series coefficients for the unfiltered $v_{L,FW}(t)$ in Table 3 of part A. The Fourier series coefficients for $v_{O,FW}(t)$ are simply those for the unfiltered $v_{L,FW}(t)$ multiplied by 2 (i.e., divide out $H_2 = 0.5$).

Table 2 Fourier series coefficients for $v_{O,FW}(t)$

Coefficient	Value/expression		
$a_{0,FW}$	$2V_m/\pi = 112.04508 \text{ V}$		
$a_{k,FW}$ $(k = 1, 2,)$	$\frac{-4V_m \cos(\pi k)}{\pi (4k^2 - 1)} = \frac{-224.09016 \cos(\pi k)}{4k^2 - 1} \text{ (V)}$		
$b_{k,FW}$ $(k = 1, 2,)$	0		

We get the Fourier series for $v_{L,FW}(t)$ by multiplying the magnitude of each term of $v_{O,FW}(t)$ by $|H_3(k\omega_{0,FW})|$ and adding the phase angle of $H_3(k\omega_{0,FW})$ to the argument of each $\cos(k\omega_{0,FW}t)$ term, i.e., $\cos[k\omega_{0,FW}t + \angle H_3(k\omega_{0,FW})]$.

$$v_{L,FW}(t) = |H_{3}(0)| a_{0,FW} + \sum_{k=1}^{\infty} |H_{3}(k\omega_{0,FW})| a_{k,FW} \cos(k\omega_{0,FW}t + \angle H_{3}(k\omega_{0,FW}))$$

$$= (0.5) \frac{2V_{m}}{\pi} + \sum_{k=1}^{\infty} |H_{3}(k\omega_{0,FW})| \left(\frac{-4V_{m} \cos(\pi k)}{\pi(k^{2} - 1)}\right) \cos(k\omega_{0,FW}t + \angle H_{3}(k\omega_{0,FW}))$$

$$= (0.5) \frac{(2)176}{\pi} + \sum_{k=1}^{\infty} |H_{3}(k1600\pi)| \left(\frac{-4(176)\cos(\pi k)}{\pi(k^{2} - 1)}\right) \cos(k1600\pi t + \angle H_{3}(k1600\pi))$$

$$v_{L,FW}(t) = 56.0225 + \sum_{k=1}^{\infty} |H_{3}(k1600\pi)| \left(\frac{-224.09\cos(\pi k)}{k^{2} - 1}\right) \cos(k1600\pi t + \angle H_{3}(k1600\pi)) \text{ (V) } -\infty < t < \infty$$
where $\omega_{0,FW} = 2\pi f_{0,FW} = 1600\pi = 5026.548 \text{ rad/s} \text{ and}$

where $\omega_{0,FW} = 2\pi f_{0,FW} = 1600\pi = 5026.548 \text{ rad/s}$, and

$$H_3(k\omega_{0,FW}) = H_3(k1600\pi) = \frac{4}{8+jk1600\pi0.008} = \frac{0.5}{1+j1.6\pi k} -\infty < \omega < \infty.$$

b) Calculate $a_{0,xx}$, $a_{1,xx}$, and $a_{2,xx}$. Calculate H(0), $H(\omega_{0,xx})$, and $H(2\omega_{0,xx})$ [put in polar form w/ angle in degrees]. Type out the equation for a truncated trigonometric Fourier series of $v_{L,xx}(t)$ that includes the dc term plus first two harmonics with all terms enumerated.

$$H_{3}(0) = \frac{0.5}{1+j0} = 0.5$$
 & $a_{0,FW} = 2(176)/\pi = 112.04508 \text{ V},$
$$H_{3}(1600\pi) = \frac{0.5}{1+j1.6\pi} = 0.09756 \angle -78.748^{\circ} \text{ & } a_{1,FW} = \frac{-4(176)\cos(\pi)}{\pi(4(1)^{2}-1)} = 74.6967 \text{ (V)}$$

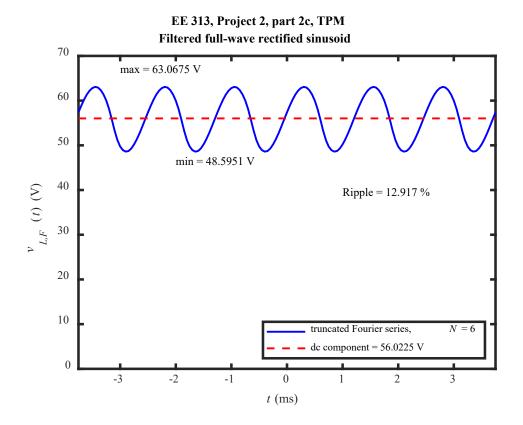
$$H_{3}(3200\pi) = \frac{0.5}{1+j1.6\pi2} = 0.04949 \angle -84.319^{\circ} \text{ & } a_{2,FW} = \frac{-4(176)\cos(\pi 2)}{\pi(4(2)^{2}-1)} = -14.9393 \text{ (V)}$$

$$v_{L,FW}(t) = (0.5)112.045 + (0.09756)74.7\cos(\omega_{0,FW}t - 78.748^{\circ}) - (0.04949)14.9393\cos(2\omega_{0,FW}t - 84.319^{\circ})$$

$$= 56.0225 + 7.2874\cos(1600\pi t - 78.748^{\circ}) - 0.7393\cos(3200\pi t - 84.309^{\circ}) \text{ (V)}$$

$$= 56.0225 + 7.2874\cos(5026.55t - 1.3744) - 0.7393\cos(10053.1t - 1.47165) \text{ (V) } -\infty < t < \infty$$

c) Plot the truncated Fourier series of $v_{L,xx}(t)$ using the dc term plus the first six harmonics. Put a labeled horizontal dashed line at the value of the dc term $(v_{L,xx})_{dc}$. For horizontal and vertical scales, use - $1.5T \le t \le 1.5T$ and $0 \le V \le 70$ V, respectively. Determine the maximum $(v_{L,xx})_{max}$ and minimum $(v_{L,xx})_{min}$ values of $v_{L,xx}(t)$ and put on the plot. While ideally the filtered output would be equal to $(v_{L,xx})_{dc}$, the output quality of practical dc power supplies is characterized by their ripple R defined as $R = \left[\left(\left(v_{L,xx} \right)_{\text{max}} - \left(v_{L,xx} \right)_{\text{min}} \right) / 2 \right] / \left(v_{L,xx} \right)_{\text{dc}} *100\%.$ Find the ripple R for this circuit.



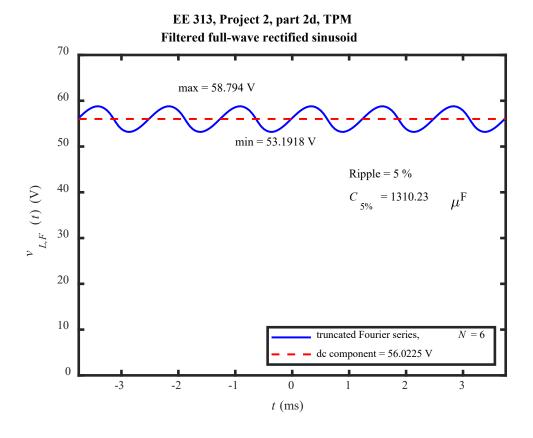
 $\sim (v_{L,FW})_{\text{max}} = 63.0675 \text{ V}$ and $(v_{L,FW})_{\text{min}} = 48.5951 \text{ V}$

$$R = \left(\frac{\left[\left(v_{L,F}\right)_{\text{max}} - \left(v_{L,F}\right)_{\text{min}}\right]/2}{\left(v_{L,F}\right)_{\text{dc}}}\right) 100\% = \left(\frac{\left[63.0675 - 48.5951\right]/2}{56.0225}\right) 100\% \Rightarrow \underline{R} = 12.917\%$$

<snip>

- 3) \langle snip \rangle modify our circuit by changing the capacitor value C (other parts of circuit are unchanged). As a 'rule of thumb', a 5% ripple is considered acceptable for most dc power supply applications.
 - a) $\langle \text{snip} \rangle$ determine $\langle \text{snip} \rangle$ $C_{5\%}$ (μF) needed to achieve a 5% ripple. Plot $\langle \text{snip} \rangle$ $v_{L,xx}(t) \langle \text{snip} \rangle$ Put a labeled horizontal dashed line $\langle \text{snip} \rangle$ ($v_{L,xx}$)_{dc}. For horizontal & vertical scales, use $-1.5T \leq t \leq 1.5T$ & $0 \leq V \leq 60 \text{ V} \langle \text{snip} \rangle$ Determine $\langle \text{snip} \rangle$ ($v_{L,xx}$)_{max} & $\langle \text{snip} \rangle$ ($v_{L,xx}$)_{min} values of $v_{L,xx}(t)$ & put on plot.

$$\sim C_{5\%} = 1310.23 \ \mu F$$



<snip>

b) Using $C_{5\%}$, estimate the total power $P_{L,xx}$ in the filtered load voltage by adding the power in the dc plus first ten harmonics. For the three largest line spectra, fill-in the table below. What fraction of the total power is contained in these three?

Table 3 Power in three largest line spectra for 5% filtered full-wave rectification

harmonic #	f (Hz)	amplitude (V)	P (W)	% of $P_{L,xx}$
0	0	56.02254	784.631246	99.871407
1	800	2.827328	0.999223	0.127186
2	1600	0.283342	0.010035	0.001277

 $ho P_{L,FW,5\%} \cong 785.6415244 \text{ W}$ of which the first three account for 99.99987%.

<snip>