EE 313 Signals and Systems (Fall 2024)

Project 1 Unit Pulse Response/Convolution Representation, Part A

<snip>

Project

- 1) Using $\langle \text{snip} \rangle T_S = 1.5 \text{ ms}$, write an m-file to design a 6th-order Chebyshev Type I DT IIR LP filter based on an analog $\langle \text{snip} \rangle f_c = 160 \text{ Hz}$ and passband ripple of R = 0.25 dB. The specific results desired are:
 - a) Calculate and list the corresponding DT (Ω) and normalized (Wp) DT cutoff frequencies. Is the sampling rate sufficient?

DT cutoff frequency	$\Omega = \omega T_s = 2\pi (160) 1.5 \cdot 10^{-3} \implies$	$\Omega = 1.5079645$		
Normalized DT cutoff frequency	$Wn = \Omega / \pi = 1.5079645 / \pi \implies$	<u>Wn = 0.48</u>		
Since $0 < Wn = 0.48 < 1$, the sampling rate is sufficient.				

- b) Determine and list (each on separate line) the coefficient vectors a and b for the DT filter.
 From the MATLAB Command Window (extra line breaks removed, kept 6 digits)
 b = 0.011197 0.067184 0.167960 0.223947 0.167960 0.067184 0.011197
 a = 1.000000 -1.399302 2.120709 -1.791078 1.192879 -0.510949 0.125296
- c) Type out the corresponding DT I/O difference equation in standard form $\langle snip \rangle$ and in the recursive form $\langle snip \rangle$ What is the order N of the I/O difference equation? What is M?

Standard form

y[n] - 1.3993 y[n-1] + 2.1207 y[n-2] - 1.7911 y[n-3] + 1.1929 y[n-4] - 0.5109 y[n-5] + 0.1253 y[n-6] = 0.0112 x[n] + 0.0672 x[n-1] + 0.168 x[n-2] + 0.2239 x[n-3] + 0.168 x[n-4] + 0.0672 x[n-5] + 0.0112 x[n-6]

Recursive form

y[n] = 1.39903 y[n-1] - 2.1207 y[n-2] + 1.7911 y[n-3] - 1.1929 y[n-4] + 0.5109 y[n-5] - 0.1253 y[n-6] + 0.0112 x[n] + 0.0672 x[n-1] + 0.168 x[n-2] + 0.2239 x[n-3] + 0.168 x[n-4] + 0.0672 x[n-5] + 0.0112 x[n-6]

From the y[n-6] term, we know the order <u>N=6</u>.

From the x[n-6] term, we can see that $\underline{M=6}$ as well.

d) Give a listing of the m-file.

<snip>

- Next, you will study the frequency response of the filter to ensure it meets the specifications. <snip>Use MATLAB (write an m-file) to perform the following tasks:
 - a) Plot $\langle \text{snip} \rangle |H|$ and phase $\angle H$ response $\langle \text{snip} \rangle$ vs Ω for $-\pi \leq \Omega \leq \pi . \langle \text{snip} \rangle$

b) For the given sampling period, find the maximum CT frequencies ω_{max} (rad/s) and f_{max} (Hz) covered by this range of Ω .

Note: $\omega_{max} = \Omega_{max} / T_s = \pi / 1.5e-3$ and $f_{max} = \omega_{max} / (2\pi)$ From the MATLAB Command Window (extra line breaks removed) wmax = 2.094395102393195e+03fmax = 3.333333333333333e+02 c) Plot of the magnitude response of the filter |H| versus f for $0 \le f \le f_{\text{max}}$. Use a vertical scale of 0 to 1.1. On the plot, place and label a horizontal dashed line at $|H| = 10^{-R/20}$ and a vertical dashed line at f_c . Do these lines intersect on the curve for |H| as expected?

> Yes, the dashed lines intersect on |H| at f_c ! LP filter is working correctly.

d) Plot magnitude response of the filter |H| in decibels vs f(Hz) for $0 \le f \le f_{max}$. Use a vertical scale of -50 to 5 dB. At what frequency f_{50} is |H| down 50 dB? Express f_{50} in Hz & as a multiple of $f_{c.}$

> By interpolation, |H| is down 50 dB at $f_{50} \approx 229$ Hz = 1.43125 f_c .

e) Plot the magnitude response of the filter |H| in decibels versus f(Hz) for $0 \le f \le f_c$. Use a vertical scale of -0.5 to 0.5 dB. On the plot, place labeled horizontal dashed lines at $\pm R$ (dB).

> Note the ripple R = 0.25 dB is only down from 0 dB!

f) Determine & tabulate the magnitude response (unitless and in dB) of the filter |H(f)| when $f = f_c/3$, f_c , 1.1 f_c , and 1.25 f_c . Table format: col. 1 f (Hz), col. 2 |H(f)|, and col. 3 |H(f)| (dB).

From the MATLAB Command Window (extra line breaks removed)

Hdmag = 0.99975612218873 0.971627951577114 0.26904114404264 0.030779282453405HdmagdB = -0.0021 -0.2500 -11.4036 -30.2348 at $f = f_c/3$, f_c , $1.1 f_c$, and $1.25 f_c$ respectively.

<i>f</i> (Hz)	<i>H(f)</i>	<i>H(f)</i> (dB)
$f_c/3 = 53.33$	0.99975612218873	-0.0021
$f_c = 160$	0.971627951577114	-0.25
$1.1 f_c = 176$	0.26904114404264	-11.4036
$1.25 f_c = 200$	0.030779282453405	-30.2348

g) Does the filter meet the design specifications? Explain why or why not.

> Yes, it has the correct ripple, cut-off frequency, and is of the appropriate order.

h) Give a listing of the m-file.

<snip>