EE 313 Signals and Systems Exam 2 Example

Name							
------	--	--	--	--	--	--	--

Instructions: Show all work for full credit. Write answers in indicated places. Attach equation sheet to exam.

1) A discrete-time signal has a discrete Fourier transform of

$$X_0 = 11.3000$$
,

$$X_1 = 2.4180 + j \ 1.7568,$$

$$X_2 = 0.1820 + j \ 0.5600,$$

$$X_3 = 0.1820 - j 0.5600$$
, and

$$X_4 = 2.4180 - j 1.7568.$$

Determine how many points N there are in the signal. Given a sampling rate of 2.75 μ s, what discretetime Fourier transform frequency Ω_2 and continuous-time frequency ω_2 correspond to the point X_2 ? Then, calculate and sketch a labeled stem plot of the time domain signal x[n].

$$\Omega_2 = 0.8\pi = 2.51 \text{ rad}$$

1) continued

2) For the shown periodic signal, determine the fundamental period T & frequency ω_0 . Is it an odd function, even function, or neither? Find the complex exponential coefficients c_0 , c_1 , c_2 , c_{-1} , & c_{-2} .

$$T = \underline{4 \text{ ms}}$$
 $\omega_0 = \underline{500\pi} = \underline{1570.8 \text{ rad/s}}$ Odd, even, or neither? (circle correct answer)

$$c_0 = \underline{2.5}$$
 $c_1 = \underline{1.08678}$

$$c_{-1} =$$
 1.08678

$$c_2 = \frac{-1/\pi = 0.31831}{c_{-2} = \frac{-1/\pi = 0.31831}{c_{-2}}$$

$$c_{-2} = -1/\pi = 0.31831$$

- 3) Given the discrete-time signals $x[n] = 4 \operatorname{sgn}[n]$ and $v[n] = -2 p_5[n]$, determine the discrete-time Fourier transform of the following signals.
 - a) x[n]

$$X(\Omega) = \frac{8}{1 - e^{-j\Omega}} - \infty < \Omega < \infty$$

b) v[n]

$$V(\Omega) = \frac{-2\sin(2.5\Omega)}{\sin(0.5\Omega)} - \infty < \Omega < \infty$$

c) w[n] = n x[n]

$$W(\Omega) = \frac{8e^{-j\Omega}}{\left(1 - e^{-j\Omega}\right)^2} - \infty < \Omega < \infty$$

d) y[n] = x[n-2] * v[-n]

$$Y(\Omega) = \left(\frac{8 e^{-j2\Omega}}{1 - e^{-j\Omega}}\right) \left(\frac{-2\sin(-2.5\Omega)}{\sin(-0.5\Omega)}\right) = \left(\frac{-16 e^{-j2\Omega}}{1 - e^{-j\Omega}}\right) \left(\frac{\sin(2.5\Omega)}{\sin(0.5\Omega)}\right) - \infty < \Omega < \infty$$

- 4) Answer the following questions.
 - a) Find the time-domain signal whose frequency spectrum is shown below.

$$x(t) = \left[\frac{1080}{\pi}\operatorname{sinc}^{2}\left(\frac{30 t}{\pi}\right) - \frac{270}{\pi}\operatorname{sinc}^{2}\left(\frac{15 t}{\pi}\right)\right]\cos(90t) \quad -\infty < t < \infty$$

b) Find the Fourier transform $Y(\omega)$ of $y(t) = te^{-50t} u(t)$.

$$Y(\omega) = \left(\frac{1}{j\omega + 50}\right)^2 - \infty < \omega < \infty$$

c) Find the Fourier transform of $v(t) = \frac{d^2 y(t)}{dt^2}$

$$V(\omega) = \frac{-\omega^2}{(j\omega + 50)^2} - \infty < \omega < \infty$$