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Fourier Analysis using the DFT or FFT 
In the time-domain (Chapter 2), we discussed the convolution representation 
(see below) of a discrete-time system using the unit-pulse response [ ]h n . 
 

Linear, time-invariant
system/filter

[ ]h n

Input signal
[ ]x n

Output signal
[ ] =  * y n x h h x[ ] [ ] = [ ] * [ ]n n n n

 

Using discrete-time Fourier transform (DTFT) and analysis, this system can be 
represented as shown below. 

Linear, time-invariant
system/filter

( )H Ω

Input signal
( )X Ω

Output signal
( ) = ( ) ( )Y X  HΩ Ω Ω

 

The DTFT is awkward to use directly as it is a hybrid between discrete-time 
data points and the continuous-frequency realm of Ω.   

In actual practice, it is easier and more efficient to use the discrete Fourier 
transform (DFT) which is often implemented using the fast Fourier transform 
(FFT) algorithm (see below). 

Linear, time-invariant
system/filter

Hk

Input signal
Xk

Output signal
 = Y X  Hk k k

 

Here, we put in discrete-time data points (e.g., x[n] and h[n]), convert to 
discrete frequency points (e.g., Xk and Hk) using the DFT or FFT, multiply to 
get discrete output frequency points Yk, and convert back to the discrete-time 
output data points y[n] using the inverse DFT (IDFT) or inverse FFT (IFFT).   

Note: The DTFT frequency Ω and DFT indices k are related by 2
k

k
N
π

Ω = .  

So, Xk and Hk are sampled versions of the DTFT ( )X Ω  and ( )H Ω , e.g., 
2

k k
kH H

N
π = Ω = 

 
. 
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Key assumptions-   
x[n] is finite in length, say N-points, with index range 1P n P N≤ ≤ + −  

and  
h[n] is finite in length, say M-points, with index range 1Q n Q M≤ ≤ + − . 

From Chapter 2 and the convolution representation, we know that the 
discrete-time system output y[n] = x[n] * h[n] will be of length 1N M+ −  with 
an index range of 2 length( ) 1P Q n P Q N M P Q y+ ≤ ≤ + + + − = + + − .  

However, the output y[n] will be accurate over the index range 
min{ 1, 1}P Q n P Q N M+ ≤ ≤ + + − − .   

Note:  Near the beginning indices, a filter/system must ‘charge-up’, i.e., there 
must be enough points of h[n] involved with the convolution for the 
filter/system to work properly. 

Procedure 
1) Select appropriate overall number of points/length for the algorithm. 

a) To use the FFT algorithm, choose an FFT length FFTL  that is a power of 2, 
i.e., FFT 2rN M L+ ≤ = . 

b) To use the DFT algorithm, choose a DFT length DFTL N M= + . 

2) “zero-pad” both x[n] and h[n] to equal lengths.  That is, insert/add zeros onto 
the ends of x[n] and h[n] so that both vectors are the same length (index 
ranges can still be different).   

a) To use the FFT algorithm, make both x[n] and h[n] of length LFFT. 
b) To use the DFT algorithm, make both x[n] and h[n] of length LDFT. 
Note:  In MATLAB, this zero-padding can be done automatically by 

specifying the desired length in the fft() function, e.g., ftt(x, LFFT) or 
ftt(h, LDFT).  If the dft() function is used, you must do the zero-
padding before calling the function.] 
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3)  Use the FFT/DFT to move to the frequency-domain. 

a) Compute the FFTL -point FFT of x[n] and h[n] to get Xk and Hk.  E.g., In 
MATLAB, Xk = fft(x, LFFT) and Hk = fft(h, LFFT). 

b) Compute the DFTL -point DFT of x[n] and h[n] to get Xk and Hk.  E.g., In 
MATLAB, Xk = fft(x, LDFT) and Hk = fft(h, LDFT) OR, using the dft() 
function, Xk = dft(x) and Hk = dft(h). 

Note: Since the time indices are computed separately, it is OK to ignore the 
frequency phase shift(s) introduced by having [ ]x n  and [ ]h n  start at 
P and Q respectively. 

4) In both cases, perform a point-by-point vector multiplication of Xk and Hk to 
get Yk.  E.g., In MATLAB, Yk = Xk .* Hk . 

5)  Compute the output y[n] by using the inverse operation. 
a) Compute the FFTL -point inverse FFT (IFFT) of Yk to get y[n].  E.g., In 

MATLAB, use y = ifft(Yk).  The resulting vector y will be of length FFTL  
with an index range of FFT 1P Q n P Q L+ ≤ ≤ + + − . 

b) Compute the DFTL -point inverse DFT (IDFT) of Yk to get y[n].  E.g., In 
MATLAB, use y = ifft(Yk) OR y = idft(Yk).    The resulting vector y will 
be of length DFTL  with an index range of DFT 1P Q n P Q L+ ≤ ≤ + + − . 

 The index range of the output y[n] can contain many zeros as a result 
of the zero-padding. 

 The index range where the output y[n] is non-zero is still 
2 length( ) 1P Q n P Q N M P Q y+ ≤ ≤ + + + − = + + − . 

 However, the output y[n] will be accurate (strictly) over the index 
range min{ 1, 1}P Q n P Q N M+ ≤ ≤ + + − − . 
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Practical considerations 
1) What if either or both x[n] and h[n] are not finite in length? 

 Can still get usable approximate results using DFT or FFT signal 
analysis by truncating x[n] and/or h[n] to make them of finite length. 

 This will only work if x[n] and/or h[n] approach zero as n → ∞ (and, if 
non-causal, n → -∞). 

 Need some criteria for truncation, e.g., choose 
last

last
max

| [ ] | some # (e.g., 0.01 or 1%) for all 
| [ ] |
h n n n
h n

≤ ≥  

 If a rigorous criteria is used to truncate h[n], the output y[n] will be 
approximately accurate (i.e., look accurate) over the index range 

1P Q n P Q M+ ≤ ≤ + + − .  In other words, the effective index range for 

y[n] is set by the length of the input signal x[n] rather than h[n]. 

2) Sometimes, we might wish to select a desired DTFT frequency response 
( )H Ω  (e.g., some LP, HP, or BP filter) to operate on a discrete-time signal 

[ ]x n .  How do we proceed? 

Option 1:  Find h[n] for the desired ( )H Ω . 

 If h[n] is finite in length, proceed as before. 
 If h[n] is infinite in length or too long to be practical, truncate 

h[n] as discussed in 1), and then proceed. 

Option 2: Skip steps 1-3 in procedure for h[n], and directly compute values 
for kH  from the desired ( )H Ω  using the relationship 

2
k k

kH H
N
π = Ω = 

 
 where DFTN L=  or FFTN L= .  The 

challenge in doing this is to adequately sample ( )H Ω  in 
frequency, i.e., pick DFTL  or FFTL  so ( )k kH H= Ω  for 

DFT0 1k L≤ ≤ −  or FFT0 1k L≤ ≤ −  is a good representation of 
( )H Ω .  As a rule of thumb, a plot of kH  that looks like ( )H Ω , 

when the dots are connected, will work. 


