
EE 220/220L Circuits I (Fall 2019) Laboratory 4 Nodal Analysis

PRELIMINARY

- 1) Use **nodal analysis** to find the labeled node voltages v_1 , v_2 , v_3 , and v_4 with respect to the reference node (ground). Given: $V_s = 18 \text{ V}$, $I_s = 8.0 \text{ mA}$, $R_1 = 470 \Omega$, $R_2 = 220 \Omega$, $R_3 = 680 \Omega$, $R_4 = 680 \Omega$, $R_5 = 1 \text{ k}\Omega$, and $R_6 = 330 \Omega$. SHOW **ALL** WORK IN LOGBOOK!
- 2) Use the results of part 1 to find the labeled branch currents i_1 through i_6 .
- 3) Calculate the power <u>absorbed</u> by each resistor and source (remember passive sign convention). Does the power absorbed by any resistor exceed **0.125 W**? If so, which one(s)?
- 4) Have the lab instructor sign off on your preliminary before you begin the experiment.

EXPERIMENT

- 1) Measure and record the actual values of each resistor.
- 2) Build the circuit on the pegboard with the resistors in the same arrangement as shown in the circuit. If necessary, ask the lab instructor or a TA for help in configuring the sources.
- 3) Measure and record the actual source current & voltage, node voltages, and branch currents.
- 4) Have the lab instructor or a TA sign-off on your data before you tear down the circuit.

SUMMARY/CONCLUSIONS

- Prepare **four** neat tables in your logbook listing: 1) resistor values & source values, 2) node voltages, 3) branch currents, and 4) power <u>absorbed</u> by each circuit element. Format: Variable name in first column, analytic (i.e., calculated/nominal) values in second column, measured values in third column, and percent difference between the calculated/nominal and measured values in fourth column. **Note:** % difference = | measured analytic | / |analytic | *100%.
- Analyze the data and discuss the results, e.g., explain differences between predicted and measured values.