LM709 Operational Amplifier

General Description

The LM709 series is a monolithic operational amplifier intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design, in addition to providing high gain, minimizes both offset voltage and bias currents. Further, the class-B output stage gives a large output capability with minimum power drain.

External components are used to frequency compensate the amplifier. Although the unity-gain compensation network specified will make the amplifier unconditionally stable in all feedback configurations, compensation can be tailored to optimize high-frequency performance for any gain setting.

The LM709C is the commercial-industrial version of the LM709. It is identical to the LM709 except that it is specified for operation from 0°C to +70°C.
Absolute Maximum Ratings (Note 3)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

- **Supply Voltage**
 - LM709/LM709A/LM709C: ±18V

- **Power Dissipation (Note 1)**
 - LM709/LM709A: 300 mW
 - LM709C: 250 mW

- **Differential Input Voltage**
 - LM709/LM709A/LM709C: ±5V

- **Input Voltage**
 - LM709/LM709A/LM709C: ±10V

- **Output Short-Circuit Duration** (TA = +25°C)
 - LM709/LM709A/LM709C: 5 seconds

Operating Ratings (Note 3)
- **Junction Temperature Range (Note 1)**
 - LM709/LM709A: -55°C to +150°C
 - LM709C: 0°C to +100°C

- **Thermal Resistance (θJA)**
 - H Package: 150°C/W
 - 8-Pin N Package: 134°C/W
 - 14-Pin N Package: 109°C/W

Electrical Characteristics (Note 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>LM709A</th>
<th>LM709</th>
<th>LM709C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Offset Voltage</td>
<td>TA = 25°C, RS ≤ 10 kΩ</td>
<td>0.6</td>
<td>2.0</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>TA = 25°C</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>TA = 25°C</td>
<td>10</td>
<td>50</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>TA = 25°C</td>
<td>350</td>
<td>700</td>
<td>150</td>
<td>400</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>TA = 25°C</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>TA = 25°C, VS = ±15V</td>
<td>2.5</td>
<td>3.6</td>
<td>2.6</td>
<td>5.5</td>
</tr>
<tr>
<td>Transient Response</td>
<td>VIN = 20 mV, CL = 100 pF</td>
<td>VTA = 25°C</td>
<td>1.5</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>RiseTime</td>
<td>VTA = 25°C</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Overshoot</td>
<td>VTA = 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slew Rate</td>
<td>VTA = 25°C</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>RS ≤ 10 kΩ</td>
<td>3.0</td>
<td>6.0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Average Temperature of Input Offset Voltage</td>
<td>RS = 50Ω, TA = 25°C to TMAX</td>
<td>1.8</td>
<td>10</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Coefficient of Input Offset Voltage</td>
<td>RS = 10 kΩ, TA = 25°C to TMIN</td>
<td>1.8</td>
<td>10</td>
<td>6.0</td>
<td>12</td>
</tr>
<tr>
<td>Large Signal Voltage Gain</td>
<td>VS = ±15V, RL ≥ 2 kΩ</td>
<td>25</td>
<td>70</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Output Voltage Swing</td>
<td>VS = ±15V, RL = 10 kΩ</td>
<td>±12</td>
<td>±14</td>
<td>±12</td>
<td>±14</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>VS = ±15V</td>
<td>±8</td>
<td>±8</td>
<td>±10</td>
<td>±10</td>
</tr>
<tr>
<td>Common-Mode Rejection Ratio</td>
<td>RS ≤ 10 kΩ</td>
<td>80</td>
<td>110</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Supply Voltage Rejection Ratio</td>
<td>RS ≤ 10 kΩ</td>
<td>40</td>
<td>100</td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>TA = TMAX</td>
<td>3.5</td>
<td>50</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>TA = TMIN</td>
<td>40</td>
<td>250</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>TA = TMIN</td>
<td>85</td>
<td>170</td>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature for LM709/LM709A and 100°C maximum for LM709C. For operating at elevated temperatures, the device must be derated based on thermal resistance θJA, Tj(MAX) and TA.

Note 2: These specifications apply for −55°C ≤ TA ≤ +125°C for the LM709/LM709A and 0°C ≤ TA ≤ +70°C for the LM709C with the following conditions:
- ±9V ≤ VS ≤ ±15V, C1 = 5000 pF, R1 = 1.5 kΩ, C2 = 200 pF and R2 = 51Ω.

Note 3: Absolute Maximum Ratings indicate limits which if exceeded may result in damage. Operating Ratings are conditions where the device is expected to be functional but not necessarily within the guaranteed performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Schematic Diagram

Typical Applications

Unity Gain Inverting Amplifier

FET Operational Amplifier

Voltage Follower

Offset Balancing Circuit

*To be used with any capacitive loading on output.
**Pin connections shown are for metal can package.
¹Should be equal to DC source resistance on input.

TL/H/11477–1
TL/H/11477–2
TL/H/11477–3
TL/H/11477–7
TL/H/11477–8

Obsolescent
Guaranteed Performance Characteristics

Output Voltage Swing

Input Common-Mode Voltage Range

Voltage Gain

Supply Current

TL/H/11477–9
Typical Performance Characteristics

- **Input Offset Current**
- **Input Bias Current**
- **Supply Current**

- **Slew Rate as a Function of Closed-Loop Gain Using Recommended Compensation Networks**
- **Frequency Response for Various Closed-Loop Gains**
- **Output Voltage Swing as a Function of Frequency**

- **Output Voltage Swing as a Function of Supply Voltage**
- **Input Bias Current as a Function of Supply Voltage**
Physical Dimensions inches (millimeters)

Metal Can Package (H)
Order Number LM709AH, LM709H or LM709CH
NS Package Number H08C

8-Lead Molded Dual-In-Line Package (N)
Order Number LM709CN-8
NS Package Number N08E
Physical Dimensions inches (millimeters) (Continued)

14-Lead Molded Dual-In-Line Package (N)
Order Number LM709CN
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in medical applications requiring enhanced plastic.

TI products are not authorized for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any damages arising out of the use of TI products in such safety-critical applications.

Products
- Audio: www.ti.com/audio
- Amplifiers: amplifier.ti.com
- Data Converters: dataconverter.ti.com
- DLP® Products: www.dlp.com
- DSP: dsp.ti.com
- Clocks and Timers: www.ti.com/clocks
- Interface: interface.ti.com
- Logic: logic.ti.com
- Power Mgmt: power.ti.com
- Microcontrollers: microcontroller.ti.com
- RFID: www.ti-rfid.com
- OMAP Mobile Processors: www.ti.com/omap
- Wireless Connectivity: www.ti.com/wirelessconnectivity

Applications
- Communications and Telecom: www.ti.com/communications
- Computers and Peripherals: www.ti.com/computers
- Consumer Electronics: www.ti.com/consumer-apps
- Energy and Lighting: www.ti.com/energy
- Industrial: www.ti.com/industrial
- Medical: www.ti.com/medical
- Security: www.ti.com/security
- Space, Avionics and Defense: www.ti.com/space-avionics-defense
- Transportation and Automotive: www.ti.com/automotive
- Video and Imaging: www.ti.com/video

TI E2E Community Home Page: e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated