Assuming the op-amp in the circuit is ideal, find the labeled currents and voltages.


Ideal op $-\operatorname{amp}\left(R_{i} \rightarrow \infty\right) \Rightarrow I_{\text {rok }}=0$
Ideal op-amp $\left(V_{d}=0\right)$, Ohm's Law, \& KVL

$$
\begin{aligned}
-6 V+I 7_{101}^{0}(10 \mathrm{kn})+y_{0}^{0}+V_{A} & =0 \\
V_{A} & =6 V
\end{aligned}
$$

Ohm's Law $I_{2 K}=\frac{V_{A}-3}{2 \mathrm{kn}}=\frac{6-3}{2000} \Rightarrow I_{2 k}=1.5 \mathrm{~mA}$ $\begin{aligned} & \text { KCL @ Node A } \\ & \text { and Ideal op-amp }\end{aligned} \quad I_{8 K}-I_{2 K}+t_{50}^{-}=0$

$$
I_{g K}=I_{2 k}=1.5 \mathrm{~mA}
$$

VUL: $\quad-V_{A}-I_{g / 1}\left(8 K_{n}\right)+V_{0}=0$

$$
V_{0}=6+1.5 \times 10^{-3}(8000) \Rightarrow V_{0}=18 \mathrm{~V}
$$

Ohm's Law: $\quad I_{L}=\frac{V_{0}-0}{R_{L}}=\frac{18}{1000} \Rightarrow I_{L}=18 \mathrm{~mA}$ KCL @output $I_{0}=I_{8 \mathrm{~K}}+I_{L}=1.5+18 \Rightarrow I_{0}=19.5 \mathrm{~mA}$ node:

