CENG 244 Introduction to Digital Systems

Exam 3 Topics & Notes

Topics and potential questions that you can expect on Exam #3 include:

Chapter 5 Synchronous Sequential Logic

- 1) Know how to identify a synchronous sequential logic circuit
- 2) Understand operation of SR and D latches
- 3) Understand operation of *D*, *JK*, & *T* flip-flops, e.g., characteristic equations & tables as well as excitation tables
- 4) Know how to analyze a clocked sequential circuit, e.g., find state & output equations from state tables and/or state diagrams
- 5) Be able to determine flip-flop input equations (AKA excitation equations) & design a clocked sequential circuit, e.g., need state table for circuit & excitation table for flip-flop

Chapter 6 Registers and Counters

- 1) Understand operation of parallel-load and shift registers
- 2) Understand operation of serial adder
- 3) Understand operation of universal shift registers
- 4) Understand operation of binary & BCD ripple counters
- 5) Understand operation of binary, up-down binary, binary /w parallel load, and BCD synchronous counters
- 6) Understand operation and be able to design counters (e.g., counters with arbitrary sequence)
- 7) Understand operation of ring counters
- 8) Understand operation of switch-tail ring counters and Johnson counters

Notes:

- (1) The use of calculators and electronic devices of any kind will not be permitted on the exam.
- (2) The exam is closed book and closed notes.
- (3) However, you may print out and use the following page. You may put equations, notes, or circuits **inside** the lower box. Rule- no worked problems or examples.

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x + y) = x
		Copyright ©2012 Pearson Education, publishing as Prentice Hall		
ions/Notes:				