CENG 244 Introduction to Digital Systems

Exam 2 Topics & Notes

Topics and potential questions that you can expect on Exam #2 include:

Chapter 3 Gate-Level Minimization

- 1) Know how to make Karnaugh Maps (AKA: K-Maps) for 2, 3, & 4 variable Boolean functions
- 2) Know how to use K-Maps to simplify 2, 3, & 4 variable Boolean functions into sum-ofproducts form
- 3) Know how to use K-Maps to simplify 2, 3, & 4 variable Boolean functions into product-ofsums form
- 4) Know how to use K-Maps of 2, 3, & 4 variable Boolean functions with don't-care conditions
- 5) NAND and NOR logic gate circuit implementation

Chapter 4 Combinational Logic

- 1) Know how to find the Boolean function(s) from a combinational logic circuit
- 2) Know how to design a combinational logic circuit to implement Boolean function(s) from a truth table
- 3) Know how a half adder, full adder, binary adder, and adder-subtractor work (includes carry and overflow).
- 4) Know how a binary multiplier works.
- 5) Know how a magnitude comparator works.
- 6) Know how decoders work and how to use a one to implement a combinational circuit in sumof-minterms form.
- 7) Know how encoders work.
- 8) Know how multiplexers work and how to use a one to implement a combinational circuit in sum-of-minterms form.

Notes:

- (1) The use of calculators and electronic devices of any kind will not be permitted on the exam.
- (2) The exam is closed book and closed notes.
- (3) However, you may print out and use the following page. You may put equations, notes, or circuits **inside** the lower box. Rule- no worked problems or examples.

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x + y) = x
		Copyright ©2012 Pearson Education, publishing as Prentice Hall		
ions/Notes:				