Example- An unknown logic circuit with 4 inputs has the Truth Table (below) when tested. Earlier, we used a four variable K-Map to determine Boolean functions in the canonical sum-of-minterms and simplified sum-of-products forms for this unknown logic circuit.

а	b	С	d	F_2
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

• The K-Map (below) was used to directly express F_2 in canonical sum-of-minterms form (eight terms and 32 literals).

ab\cd	00	01	11	10	
00	m_{0}	m_{1}	$m_3 = a'b'cd$	$m_2 = a'b'cd'$	
01	m_4	M 5.	$m_7 = a'bcd$	$m_6 = a'bcd'$	
11	$m_{12}=abc'd'$	$m_{13}=a b c' d$	$m_{15}=a b c d$	m₁₄	
10	m_8	m 9	m_11	$m_{10}=ab'cd'$	

$$F_{2} = \sum (2,3,6,7,10,12,13,15)$$

= a'b'cd'+a'b'cd+a'bcd'+a'bcd+ab'cd'+abc'd'+abc'd+abcd

• Then, we used this K-Map to directly express F_2 in a simplified sum-of-products form which gave two answers.

$$F_{2,\text{simp1}} = a'c + b'cd' + abc' + bcd$$
or
$$F_{2,\text{simp2}} = a'c + b'cd' + abc' + abd$$

Now, we wish to express F_2 in canonical product-of-maxterms and simplified product-of-sums forms using K-Maps.

• To begin, we fill-in the K-Map from the Truth Table with "1"s and "0"s.

ab\cd	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	1	1	1	0
10	0	0	0	1

Next, we fill-in the minterms where there are "0"s and use the K-Map to directly express F₂' in canonical sum-of-minterms form (eight terms and 32 literals).

ab\cd	00	01	11	10	
00	$m_0 = a'b'c'd'$	$m_1 = a'b'c'd$	m 3	m_2	
01	$m_4 = a'bc'd'$	$m_5 = a'bc'd$	m 7	m₆	
11	m_{12}	₩ ₁₃	m₁₅	$m_{14}=abcd'$	
10	$m_8 = a b' c' d'$	$m_9 = a b' c' d$	$m_{11}=a b' c d$	m_{10}	

 $F_{2}' = \sum (0,1,4,5,8,9,11,14)$ = a'b'c'd'+a'b'c'd+a'bc'd'+a'bc'd+ab'c'd+ab'c'd+abcd' • Then, use this K-Map to directly express F_2' in a simplified sumof-products form.

ab\cd	00	01	11	10	
00	$m_0 = a'b'c'd'$	$m_1 = a'b'c'd$	m ₃	m_2	
01	$m_4 = a'bc'd'$	$m_5 = a'bc'd$	m_{7}	m 6	
11	m 12	<i>m</i> ₁₃	m₁₅	$m_{14}=a b c d'$	
10	$m_8 = a b' c' d'$	$m_9 = a b' c' d$	$m_{11}=a b' c d$	<i>m</i> ₁₀	

a) The upper left corner has <u>four</u> adjacent squares $(m_0, m_1, m_4, \& m_5)$ which share the pair of literals/prime implicant a'c' [we eliminated literals *b*, *b'*, *d*, & *d'*]. Note that the prime implicant a'c' is <u>essential</u> for minterms m_4 and m_5 .

ab\cd	00	01	11	10	
00	$m_0 = a'b'c'd'$	$m_1 = a'b'c'd$	m 3	m_2	
01	$m_4 = a'bc'd'$	$m_5 = a'bc'd$	m_{7}	m ₆	
11	m 12	<i>m</i> ₁₃	m₁₅	$m_{14}=abcd'$	
10	$m_8 = a b' c' d'$	$m_9=a b'c'd$	$m_{11}=a b' c d$	m_{10}	

b) The upper & lower left corners have <u>four</u> adjacent squares (m₀, m₁, m₈, & m₉) which share the pair of literals/prime implicant b'c' [we eliminated literals a, a', d, & d']. Note that the prime implicant b'c' is <u>essential</u> for minterm m₈ and that minterms m₀ & m₁ are used again.

ab\cd	00	01	11	10	
00	$m_0 = a'b'c'd'$	$m_1 = a'b'c'd$	M 3	m_2	
01	$m_4 = a'bc'd'$	$m_5 = a'bc'd$	m_{7}	m₆	
11	m₁₂	₩ ₁₃	m₁₅	$m_{14}=abcd'$	
10	$m_8 = a b' c' d'$	$m_9=a b'c'd$	$m_{11}=a b' c d$	m₁₀	

c) The row where ab = 10 has <u>three</u> minterms/squares in a row $(m_8, m_9, \& m_{11})$. Since three is not a power of two and we have covered $m_8 \& m_9$ already, we will group the <u>two</u> adjacent minterms/ squares $m_9 \& m_{11}$ which share the trio of literals/prime implicant ab'd [eliminated literals c & c']. Note that the prime implicant ab'd is <u>essential</u> for minterm m_{11} , but not for m_9 .

ab\cd	00	00 01 11		10	
00	$m_0 = a'b'c'd'$	$m_1 = a'b'c'd$	M 3	m_2	
01	$m_4 = a'bc'd'$	$m_5 = a'bc'd$	m_{7}	m₆	
11	m₁₂	₩ ₁₃	m₁₅	$m_{14}=a b c d'$	
10	$m_8 = a b' c' d'$	$m_9 = a b' c' d$	$m_{11}=a b' c d$	m₁₀	

- d) The last remaining minterm/square $m_{14}=a \ b \ c \ d'$ is not adjacent to any other minterm/square. Therefore, it cannot be simplified.
- e) Therefore, the simplified sum-of-products forms for F_2' is-

$$F_{2,\text{simp}}' = a'c' + b'c' + ab'd + abcd'$$

This simplified Boolean function has **four** terms and **11** literals [as opposed to **eight** terms and **32** literals].

• Now, we can take the complement of $F_{2,simp}'$ to express F_2 in a simplified product-of-sums form by using DeMorgan's Theorem (i.e., take dual and then complement each literal).

$$F_{2,\text{simp}} = (F_{2,\text{simp}}')' = (a'c'+b'c'+ab'd+abcd')'$$
$$= (a+c)(b+c)(a'+b+d')(a'+b'+c'+d)$$

Note, like the simplified sum-of-products forms of F_2 , the simplified product-of-sums form also **four** terms and **11** literals [as opposed to **eight** terms and **32** literals].

Check this result using a Truth Table to show that it agrees.

а	b	с	d	a'	b'	<i>c'</i>	d'	a+c	b+c	<i>a'</i> + <i>b</i> + <i>d'</i>	<i>a'</i> + <i>b'</i> + <i>c'</i> + <i>d</i>	F _{2,simp}	F ₂
0	0	0	0	1	1	1	1	0	0	1	1	0	0
0	0	0	1	1	1	1	0	0	0	1	1	0	0
0	0	1	0	1	1	0	1	1	1	1	1	1	1
0	0	1	1	1	1	0	0	1	1	1	1	1	1
0	1	0	0	1	0	1	1	0	1	1	1	0	0
0	1	0	1	1	0	1	0	0	1	1	1	0	0
0	1	1	0	1	0	0	1	1	1	1	1	1	1
0	1	1	1	1	0	0	0	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	0	1	1	0	0
1	0	0	1	0	1	1	0	1	0	0	1	0	0
1	0	1	0	0	1	0	1	1	1	1	1	1	1
1	0	1	1	0	1	0	0	1	1	0	1	0	0
1	1	0	0	0	0	1	1	1	1	1	1	1	1
1	1	0	1	0	0	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	1	1	1	1	0	0	0
1	1	1	1	0	0	0	0	1	1	1	1	1	1

$$F_{2,\text{simp}} = (a+c)(b+c)(a'+b+d')(a'+b'+c'+d)$$