Example- An unknown logic circuit with 4 inputs has the Truth Table (below) when tested. Earlier, we used a four variable K-Map to determine Boolean functions in the canonical sum-of-minterms and simplified sum-of-products forms for this unknown logic circuit.

a	b	c	d	F_{2}
0	0	0	0	$\mathbf{0}$
0	0	0	1	$\mathbf{0}$
0	0	1	0	$\mathbf{1}$
0	0	1	1	$\mathbf{1}$
0	1	0	0	$\mathbf{0}$
0	1	0	1	$\mathbf{0}$
0	1	1	0	$\mathbf{1}$
0	1	1	1	$\mathbf{1}$
1	0	0	0	$\mathbf{0}$
1	0	0	1	$\mathbf{0}$
1	0	1	0	$\mathbf{1}$
1	0	1	1	$\mathbf{0}$
1	1	0	0	$\mathbf{1}$
1	1	0	1	$\mathbf{1}$
1	1	1	0	$\mathbf{0}$
1	1	1	1	$\mathbf{1}$

- The K-Map (below) was used to directly express F_{2} in canonical sum-of-minterms form (eight terms and 32 literals).

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	m_{θ}	m_{4}	$m_{3}=a^{\prime} b^{\prime} c d$	$m_{2}=a^{\prime} b^{\prime} c d^{\prime}$
$\mathbf{0 1}$	m_{4}	m_{5}	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	$m_{12}=a b c^{\prime} d^{\prime}$	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	m_{44}
$\mathbf{1 0}$	m_{8}	m_{9}	m_{4+}	$m_{10}=a b^{\prime} c d^{\prime}$

$$
\begin{aligned}
F_{2} & =\sum(2,3,6,7,10,12,13,15) \\
& =a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b c d^{\prime}+a^{\prime} b c d+a b^{\prime} c d^{\prime}+a b c^{\prime} d d^{\prime}+a b c^{\prime} d+a b c d
\end{aligned}
$$

- Then, we used this K-Map to directly express F_{2} in a simplified sum-of-products form which gave two answers.

$$
\begin{aligned}
& \frac{F_{2, \text { simp1 }}=a^{\prime} c+b^{\prime} c d^{\prime}+a b c^{\prime}+b c d}{\text { or }} \\
& F_{2, \text { simp2 }}=a^{\prime} c+b^{\prime} c d^{\prime}+a b c^{\prime}+a b d
\end{aligned}
$$

Now, we wish to express F_{2} in canonical product-of-maxterms and simplified product-of-sums forms using K-Maps.

- To begin, we fill-in the K-Map from the Truth Table with " 1 "s and " 0 " s .

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	0	0	1	1
$\mathbf{0 1}$	0	0	1	1
$\mathbf{1 1}$	1	1	1	0
$\mathbf{1 0}$	0	0	0	1

- Next, we fill-in the minterms where there are " 0 "s and use the KMap to directly express $F_{2}{ }^{\prime}$ in canonical sum-of-minterms form (eight terms and 32 literals).

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$m_{0}=a^{\prime} b^{\prime} c^{\prime} d^{\prime}$	$m_{1}=a^{\prime} b^{\prime} c^{\prime} d$	m_{3}	m_{z}
$\mathbf{0 1}$	$m_{4}=a^{\prime} b c^{\prime} d^{\prime}$	$m_{5}=a^{\prime} b c^{\prime} d$	m_{7}	m_{6}
$\mathbf{1 1}$	m_{12}	m_{13}	m_{15}	$m_{14}=a b c d^{\prime}$
$\mathbf{1 0}$	$m_{8}=a b^{\prime} c^{\prime} d^{\prime}$	$m_{9}=a b^{\prime} c^{\prime} d$	$m_{11}=a b^{\prime} c d$	m_{10}

$$
\begin{aligned}
F_{2}{ }^{\prime} & =\sum(0,1,4,5,8,9,11,14) \\
& =a^{\prime} b^{\prime} c^{\prime} d^{\prime}+a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b c^{\prime} d^{\prime}+a^{\prime} b c^{\prime} d+a b^{\prime} c^{\prime} d^{\prime}+a b^{\prime} c^{\prime} d+a b^{\prime} c d+a b c d^{\prime}
\end{aligned}
$$

- Then, use this K-Map to directly express $F_{2}{ }^{\prime}$ in a simplified sum-of-products form.

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$m_{0}=a^{\prime} b^{\prime} c^{\prime} d^{\prime}$	$m_{1}=a^{\prime} b^{\prime} c^{\prime} d$	m_{3}	m_{2}
$\mathbf{0 1}$	$m_{4}=a^{\prime} b c^{\prime} d^{\prime}$	$m_{5}=a^{\prime} b c^{\prime} d$	m_{7}	m_{6}
$\mathbf{1 1}$	m_{12}	m_{13}	m_{15}	$m_{14}=a b c d^{\prime}$
$\mathbf{1 0}$	$m_{8}=a b^{\prime} c^{\prime} d^{\prime}$	$m_{9}=a b^{\prime} c^{\prime} d$	$m_{11}=a b^{\prime} c d$	$m_{1 \theta}$

a) The upper left corner has four adjacent squares $\left(m_{0}, m_{1}, m_{4}, \&\right.$ m_{5}) which share the pair of literals/prime implicant $a^{\prime} c^{\prime}$ [we eliminated literals $\left.b, b^{\prime}, d, \& d^{\prime}\right]$. Note that the prime implicant $a^{\prime} c^{\prime}$ is essential for minterms m_{4} and m_{5}.

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$m_{0}=a^{\prime} b^{\prime} c^{\prime} d^{\prime}$	$m_{1}=a^{\prime} b^{\prime} c^{\prime} d$	m_{3}	m_{2}
$\mathbf{0 1}$	$m_{4}=a^{\prime} b c^{\prime} d^{\prime}$	$m_{5}=a^{\prime} b c^{\prime} d$	m_{7}	m_{6}
$\mathbf{1 1}$	m_{12}	m_{13}	m_{45}	$m_{14}=a b c d^{\prime}$
$\mathbf{1 0}$	$m_{8}=a b^{\prime} c^{\prime} d^{\prime}$	$m_{9}=a b^{\prime} c^{\prime} d$	$m_{11}=a b^{\prime} c d$	m_{10}

b) The upper \& lower left corners have four adjacent squares $\left(m_{0}\right.$, $m_{1}, m_{8}, \& m_{9}$) which share the pair of literals/prime implicant $b^{\prime} c^{\prime}$ [we eliminated literals $a, a^{\prime}, d, \& d^{\prime}$]. Note that the prime implicant $b^{\prime} c^{\prime}$ is essential for minterm m_{8} and that minterms m_{0} $\& m_{1}$ are used again.

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$m_{0}=a^{\prime} b^{\prime} c^{\prime} d^{\prime}$	$m_{1}=a^{\prime} b^{\prime} c^{\prime} d$	m_{3}	m_{7}
$\mathbf{0 1}$	$m_{4}=a^{\prime} b c^{\prime} d^{\prime}$	$m_{5}=a^{\prime} b c^{\prime} d$	m_{7}	m_{6}
$\mathbf{1 1}$	m_{42}	m_{13}	m_{45}	$m_{14}=a b c d^{\prime}$
$\mathbf{1 0}$	$m_{8}=a b^{\prime} c^{\prime} d^{\prime}$	$m_{9}=a b^{\prime} c^{\prime} d$	$m_{11}=a b^{\prime} c d$	m_{19}

c) The row where $a b=10$ has three minterms/squares in a row $\left(m_{8}\right.$, m_{9}, \& m_{11}). Since three is not a power of two and we have covered $m_{8} \& m_{9}$ already, we will group the two adjacent minterms/ squares $m_{9} \& m_{11}$ which share the trio of literals/prime implicant $a b^{\prime} d$ [eliminated literals $c \& c^{\prime}$]. Note that the prime implicant $a b^{\prime} d$ is essential for minterm m_{11}, but not for m_{9}.

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$m_{0}=a^{\prime} b^{\prime} c^{\prime} d^{\prime}$	$m_{1}=a^{\prime} b^{\prime} c^{\prime} d$	m_{3}	m_{7}
$\mathbf{0 1}$	$m_{4}=a^{\prime} b c^{\prime} d^{\prime}$	$m_{5}=a^{\prime} b c^{\prime} d$	m_{7}	m_{6}
$\mathbf{1 1}$	m_{12}	m_{13}	m_{15}	$m_{14}=a b c d^{\prime}$
$\mathbf{1 0}$	$m_{8}=a b^{\prime} c^{\prime} d^{\prime}$	$m_{9}=a b^{\prime} c^{\prime} d$	$m_{11}=a b^{\prime} c d$	$m_{1 \theta}$

d) The last remaining minterm/square $m_{14}=a b c d^{\prime}$ is not adjacent to any other minterm/square. Therefore, it cannot be simplified.
e) Therefore, the simplified sum-of-products forms for $F_{2}{ }^{\prime}$ is-

$$
F_{2, \text { simp }}^{\prime}=a^{\prime} c^{\prime}+b^{\prime} c^{\prime}+a b^{\prime} d+a b c d^{\prime}
$$

This simplified Boolean function has four terms and 11 literals [as opposed to eight terms and 32 literals].

- Now, we can take the complement of $F_{2, \text { simp }}{ }^{\prime}$ to express F_{2} in a simplified product-of-sums form by using DeMorgan's Theorem (i.e., take dual and then complement each literal).

$$
\begin{aligned}
F_{2, \text { simp }} & =\left(F_{2, \text { simp }}{ }^{\prime}\right)^{\prime}=\left(a^{\prime} c^{\prime}+b^{\prime} c^{\prime}+a b^{\prime} d+a b c d^{\prime}\right)^{\prime} \\
& =(a+c)(b+c)\left(a^{\prime}+b+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c^{\prime}+d\right)
\end{aligned}
$$

Note, like the simplified sum-of-products forms of F_{2}, the simplified product-of-sums form also four terms and $\mathbf{1 1}$ literals [as opposed to eight terms and $\mathbf{3 2}$ literals].

Check this result using a Truth Table to show that it agrees.

$$
F_{2, \text { simp }}=(a+c)(b+c)\left(a^{\prime}+b+d^{\prime}\right)\left(a^{\prime}+b^{\prime}+c^{\prime}+d\right)
$$

a	b	c	d	a^{a}	b^{1}			d^{\prime}	$a+c$	$b+c$	$a^{\prime}+b+d^{\prime}$	$a^{\prime}+b^{\prime}+c^{\prime}+d$	$F_{2, \text { simp }}$	F_{2}
0	0	0	0	1	1		1	1	0	0	1	1	0	0
0	0	0	1	1	1		1	0	0	0	1	1	0	0
0	0	1	0	1	1		0	1	1	1	1	1	1	1
0	0	1	1	1	1		0	0	1	1	1	1	1	1
0	1	0	0	1	0		1	1	0	1	1	1	0	0
0	1	0	1	1	0		1	0	0	1	1	1	0	0
0	1	1	0	1	0		0	1	1	1	1	1	1	1
0	1	1	1	1	0		0	0	1	1	1	1	1	1
1	0	0	0	0	1		1	1	1	0	1	1	0	0
1	0	0	1	0	1		1	0	1	0	0	1	0	0
1	0	1	0	0	01		0	1	1	1	1	1	1	1
1	0	1	1	0	1	1	0	0	1	1	0	1	0	0
1	1	0	0	0	0		1	1	1	1	1	1	1	1
1	1	0	1	0	0		1	0	1	1	1	1	1	1
1	1	1	0	0	0		0	1	1	1	1	0	0	0
1	1	1		0	0			0	1	1	1	1	1	1

