Example- An engineering problem involving logical conditions with 4 inputs results in the Truth Table shown where "X" means we don't care about the output under these conditions (e.g., maybe this combination of inputs is physically impossible).

~	1.		1	F
a	b	С	d	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	Χ
0	1	1	0	Χ
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	Χ
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	Χ
1	1	1	1	Χ

We will use a four variable K-Map to determine Boolean functions in the simplified sum-of-products and product-of-sums forms for this problem.

• First create K-Map directly from Truth Table.

ab\cd	00	01	11	10
00	0	0	1	0
01	1	Χ	1	X
11	0	1	Χ	X
10	0	0	1	X

• Next, we will use this K-Map to directly express *F* in a simplified sum-of-products form. The following sequence allows the coverage of all squares/minterms in groups of four by taking advantage of the don't-care squares/minterms.

00	01	11	10
0	0	1	0
1	X	1	X
0	1	Χ	Χ
0	0	1	Χ
00	01	11	10
0	0	1	0
1	Χ	1	Χ
0	1	X	Χ
	1 0 0 00 0 1	1 X 0 1 0 0 0 0 0 1 X	1 X 1 0 1 X 0 0 1 0 0 1 00 01 11 0 0 1 1 X 1 0 01 11 0 0 1 1 X 1

ab\cd	00	01	11	10
00	0	0	1	0
01	1	Χ	1	Χ
11	0	1	Χ	X
10	0	0	1	Χ

The K-Map with the selected minterms filled-in.

ab\cd	00	01	11	10
00	m_{0}	m_{1}	$m_3 = a'b'cd$	m_2
01	$m_4 = a'bc'd'$	$m_5 = a'bc'd$	$m_7 = a'bcd$	$m_6 = a'bcd'$
11	m_{12}	$m_{13}=abc'd$	$m_{15}=a b c d$	m_{14}
10	m 8	m 9	$m_{11}=a b' c d$	m_10

The simplified sum-of-products form is: a result with **three** terms and **six** literals.

$$\underline{F_{\rm sop}} = a'b + bd + cd;$$

• What if all the don't-care minterms/squares had been made "0"s?

ab\cd	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

The following sequence allows the best coverage of all squares/minterms under this scenario.

ab\cd	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

ab\cd	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

ab\cd	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

The simplified sum-of-products form is $\underline{a'cd} + \underline{b'cd} + \underline{a'bc'd'} + \underline{abc'd}$; a result with **four** terms and **14** literals. Not nearly as compact.

SDSM&T

• Next, we will use this K-Map to express *F* in a simplified product-ofsums form(s). To get *F'* in simplified sum-of-products form(s), the following sequences allow the coverage of all the "0" squares/minterms in groups of two or four by taking advantage of the don't-care squares/minterms.

ab\cd	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	Χ	Χ
10	0	0	1	X

ab\cd	00	01	11	10
00	0	0	1	0
01	1	Χ	1	Χ
11	0	1	X	Χ
10	0	0	1	Χ

and

ab\cd	00	01	11	10
00	0	0	1	0
01	1	X	1	Χ
11	0	1	X	Χ
10	0	0	1	Χ

or

ab\cd	00	01	11	10
00	0	0	1	0
01	1	Χ	1	Χ
11	0	1	X	Χ
10	0	0	1	Χ

Here, $\underline{F'=b'c'+cd'+ac'd'}$ or $\underline{F'=b'c'+cd'+abd'}$.

Now, we take the complement of F' to express F in a simplified product-of-sums form by using DeMorgan's Theorem (i.e., take dual and then complement each literal).

$$F_{\text{pos1}} = (F')' = (b'c' + cd' + ac'd')'$$

= $(b+c)(c'+d)(a'+c+d)$

a result with three terms and seven literals (two complemented). Or,

$$F_{\text{pos2}} = (F')' = (b'c' + cd' + abd')'$$

= $(b+c)(c'+d)(a'+b'+d)$

a result with **three** terms and **seven** literals (three complemented). By one complement/NOT operation, the first option is slightly simpler.

• Finally, check these results using Truth Tables to show they agree for the "0"s and "1"s. We don't-care about the "X"s!

$\underline{\mathbf{I}}_{\underline{\mathrm{SOP}}} = \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + \mathbf{c} \cdot \mathbf{u}$									
a	b	С	d	<i>a'</i>	a'b	b d	c d	F_{sop}	F
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0
0	0	1	1	1	0	0	1	1	1
0	1	0	0	1	1	0	0	1	1
0	1	0	1	1	1	1	0	1	Χ
0	1	1	0	1	1	0	0	1	Χ
0	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	Χ
1	0	1	1	0	0	0	1	1	1
1	1	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	1	1
1	1	1	0	0	0	0	0	0	Χ
1	1	1	1	0	0	1	1	1	Χ

$\underline{F_{\text{sop}}} = a'b + bd + cd$

		_								
a	b	С	d	<i>a'</i>	<i>c′</i>	b+c	<i>c′</i> + <i>d</i>	<i>a′</i> + <i>c</i> + <i>d</i>	$F_{\rm pos1}$	F
0	0	0	0	1	1	0	1	1	0	0
0	0	0	1	1	1	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	0
0	0	1	1	1	0	1	1	1	1	1
0	1	0	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	1	Χ
0	1	1	0	1	0	1	0	1	0	Χ
0	1	1	1	1	0	1	1	1	1	1
1	0	0	0	0	1	0	1	0	0	0
1	0	0	1	0	1	0	1	1	0	0
1	0	1	0	0	0	1	0	1	0	Χ
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	0	1	1	1	0	0	0
1	1	0	1	0	1	1	1	1	1	1
1	1	1	0	0	0	1	0	1	0	Χ
1	1	1	1	0	0	1	1	1	1	Χ

$$F_{\text{pos1}} = (b+c)(c'+d)(a'+c+d)$$

$$F_{pos2} = (b+c)(c'+d)(a'+b'+d)$$

a	b	С	d	<i>a'</i>	b'	<i>c′</i>	b+c	<i>c′</i> + <i>d</i>	<i>a′</i> + <i>b′</i> + <i>d</i>	$F_{\rm pos2}$	F
0	0	0	0	1	1	1	0	1	1	0	0
0	0	0	1	1	1	1	0	1	1	0	0
0	0	1	0	1	1	0	1	0	1	0	0
0	0	1	1	1	1	0	1	1	1	1	1
0	1	0	0	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1	Χ
0	1	1	0	1	0	0	1	0	1	0	Χ
0	1	1	1	1	0	0	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	0	0
1	0	0	1	0	1	1	0	1	1	0	0
1	0	1	0	0	1	0	1	0	1	0	Χ
1	0	1	1	0	1	0	1	1	1	1	1
1	1	0	0	0	0	1	1	1	0	0	0
1	1	0	1	0	0	1	1	1	1	1	1
1	1	1	0	0	0	0	1	0	0	0	Χ
1	1	1	1	0	0	0	1	1	1	1	Χ