Example- An engineering problem involving logical conditions with 4 inputs results in the Truth Table shown where " X " means we don't care about the output under these conditions (e.g., maybe this combination of inputs is physically impossible).

a	b	c	d	F
0	0	0	0	$\mathbf{0}$
0	0	0	1	$\mathbf{0}$
0	0	1	0	$\mathbf{0}$
0	0	1	1	$\mathbf{1}$
0	1	0	0	$\mathbf{1}$
0	1	0	1	\mathbf{X}
0	1	1	0	\mathbf{X}
0	1	1	1	$\mathbf{1}$
1	0	0	0	$\mathbf{0}$
1	0	0	1	$\mathbf{0}$
1	0	1	0	\mathbf{X}
1	0	1	1	$\mathbf{1}$
1	1	0	0	$\mathbf{0}$
1	1	0	1	$\mathbf{1}$
1	1	1	0	\mathbf{X}
1	1	1	1	\mathbf{X}

We will use a four variable K-Map to determine Boolean functions in the simplified sum-of-products and product-of-sums forms for this problem.

- First create K-Map directly from Truth Table.

ab $\backslash c d$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
01	$\mathbf{1}$	X	$\mathbf{1}$	X
11	$\mathbf{0}$	$\mathbf{1}$	X	X
10	$\mathbf{0}$	$\mathbf{0}$	1	X

- Next, we will use this K-Map to directly express F in a simplified sum-of-products form. The following sequence allows the coverage of all squares/minterms in groups of four by taking advantage of the don't-care squares/minterms.

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	X	X
10	0	0	1	X
$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	X	X
10	0	0	1	X
$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	X	X
10	0	0	1	X

The K-Map with the selected minterms filled-in.

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	m_{θ}	$\#_{4}$	$m_{3}=a^{\prime} b^{\prime} c d$	$\#_{z}$
$\mathbf{0 1}$	$m_{4}=a^{\prime} b c^{\prime} d^{\prime}$	$m_{5}=a^{\prime} b c^{\prime} d$	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	m_{12}	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	$\#_{14}$
$\mathbf{1 0}$	m_{8}	m_{9}	$m_{11}=a b^{\prime} c d$	$m_{1 \theta}$

The simplified sum-of-products form is: $\quad \underline{\boldsymbol{F}}_{\text {sop }}=\boldsymbol{a}^{\prime} \boldsymbol{b}+\boldsymbol{b} \boldsymbol{d}+\boldsymbol{c} \boldsymbol{d} \boldsymbol{d}$; a result with three terms and six literals.

- What if all the don't-care minterms/squares had been made " 0 "s?

ablcd	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

The following sequence allows the best coverage of all squares/minterms under this scenario.

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	0	1	0
11	0	1	0	0
10	0	0	1	0

The simplified sum-of-products form is $\boldsymbol{a}^{\prime} \boldsymbol{c} \boldsymbol{d}+\boldsymbol{b}^{\prime} \boldsymbol{c} \boldsymbol{d}+\boldsymbol{a}^{\prime} \boldsymbol{b} \boldsymbol{c}^{\prime} \boldsymbol{d}^{\prime}+\boldsymbol{a b c} \boldsymbol{d} \boldsymbol{d}$; a result with four terms and $\mathbf{1 4}$ literals. Not nearly as compact.

- Next, we will use this K-Map to express F in a simplified product-ofsums form(s). To get F^{\prime} in simplified sum-of-products form(s), the following sequences allow the coverage of all the " 0 " squares/minterms in groups of two or four by taking advantage of the don't-care squares/minterms.

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	X	X
10	0	0	1	X

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	X	X
10	0	0	1	X

and

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	X	X
10	0	0	1	X

or

$a b \backslash c d$	00	01	11	10
00	0	0	1	0
01	1	X	1	X
11	0	1	X	X
10	0	0	1	X

Here, $\quad \underline{F^{\prime}=b^{\prime} c^{\prime}+c d^{\prime}+a c^{\prime} d^{\prime}}$ or $\underline{\boldsymbol{F}^{\prime}=\boldsymbol{b}^{\prime} \boldsymbol{c}^{\prime}+\boldsymbol{c} d^{\prime}+\boldsymbol{a} b d^{\prime}}$.

Now, we take the complement of F^{\prime} to express F in a simplified product-of-sums form by using DeMorgan's Theorem (i.e., take dual and then complement each literal).

$$
\begin{aligned}
F_{\mathrm{pos} 1} & =\left(F^{\prime}\right)^{\prime}=\left(b^{\prime} c^{\prime}+c d^{\prime}+a c^{\prime} d^{\prime}\right)^{\prime} \\
& =(b+c)\left(c^{\prime}+d\right)\left(a^{\prime}+c+d\right)
\end{aligned}
$$

a result with three terms and seven literals (two complemented). Or,

$$
\begin{aligned}
F_{\mathrm{pos} 2} & =\left(F^{\prime}\right)^{\prime}=\left(b^{\prime} c^{\prime}+c d^{\prime}+a b d^{\prime}\right)^{\prime} \\
& =(b+c)\left(c^{\prime}+d\right)\left(a^{\prime}+b^{\prime}+d\right)
\end{aligned}
$$

a result with three terms and seven literals (three complemented). By one complement/NOT operation, the first option is slightly simpler.

- Finally, check these results using Truth Tables to show they agree for the " 0 "s and " 1 "s. We don't-care about the " X "s!

$$
F_{\mathrm{pos} 1}=(b+c)\left(c^{\prime}+d\right)\left(a^{\prime}+c+d\right)
$$

a	b	c	d	a^{\prime}	c^{\prime}	$b+c$	$c^{\prime}+d$	$a^{\prime}+c+d$	$F_{\text {pos } 1}$	F
0	0	0	0	1	1	0	1	1	0	0
0	0	0	1	1	1	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	0
0	0	1	1	1	0	1	1	1	1	1
0	1	0	0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	1	X
0	1	1	0	1	0	1	0	1	0	X
0	1	1	1	1	0	1	1	1	1	1
1	0	0	0	0	1	0	1	0	0	0
1	0	0	1	0	1	0	1	1	0	0
1	0	1	0	0	0	1	0	1	0	X
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	0	1	1	1	0	0	0
1	1	0	1	0	1	1	1	1	1	1
\cdots	1	1	0	0	0	1	0	1	0	X
1	1	1	1	0	0	1	1	1	1	X

$$
F_{\mathrm{pos} 2}=(b+c)\left(c^{\prime}+d\right)\left(a^{\prime}+b^{\prime}+d\right)
$$

a	b	c	d	a^{\prime}	b^{\prime}	c^{\prime}	$b+c$	$c^{\prime}+d$	$a^{\prime}+b^{\prime}+d$	$F_{\text {pos } 2}$	\boldsymbol{F}
0	0	0	0	1	1	1	0	1	1	$\mathbf{0}$	$\mathbf{0}$
0	0	0	1	1	1	1	0	1	1	$\mathbf{0}$	$\mathbf{0}$
0	0	1	0	1	1	0	1	0	1	$\mathbf{0}$	$\mathbf{0}$
0	0	1	1	1	1	0	1	1	1	$\mathbf{1}$	$\mathbf{1}$
0	1	0	0	1	0	1	1	1	1	$\mathbf{1}$	$\mathbf{1}$
0	1	0	1	1	0	1	1	1	1	$\mathbf{1}$	\mathbf{X}
0	1	1	0	1	0	0	1	0	1	$\mathbf{0}$	\mathbf{X}
0	1	1	1	1	0	0	1	1	1	$\mathbf{1}$	$\mathbf{1}$
1	0	0	0	0	1	1	0	1	1	$\mathbf{0}$	$\mathbf{0}$
1	0	0	1	0	1	1	0	1	1	$\mathbf{0}$	$\mathbf{0}$
1	0	1	0	0	1	0	1	0	1	$\mathbf{0}$	\mathbf{X}
1	0	1	1	0	1	0	1	1	1	$\mathbf{1}$	$\mathbf{1}$
1	1	0	0	0	0	1	1	1	0	$\mathbf{0}$	$\mathbf{0}$
1	1	0	1	0	0	1	1	1	1	$\mathbf{1}$	$\mathbf{1}$
1	1	1	0	0	0	0	1	0	0	$\mathbf{0}$	\mathbf{X}
1	1	1	1	0	0	0	1	1	1	$\mathbf{1}$	\mathbf{X}

