Example- An unknown logic circuit with 4 inputs results in the Truth Table (below) when tested. We will use a four variable KMap to determine Boolean functions in the canonical sum-of-minterms and simplified sum-of-products forms for this unknown logic circuit.

a	b	c	d	F
0	0	0	0	$\mathbf{0}$
0	0	0	1	$\mathbf{0}$
0	0	1	0	$\mathbf{1}$
0	0	1	1	$\mathbf{1}$
0	1	0	0	$\mathbf{0}$
0	1	0	1	$\mathbf{0}$
0	1	1	0	$\mathbf{1}$
0	1	1	1	$\mathbf{1}$
1	0	0	0	$\mathbf{0}$
1	0	0	1	$\mathbf{0}$
1	0	1	0	$\mathbf{1}$
1	0	1	1	$\mathbf{0}$
1	1	0	0	$\mathbf{1}$
1	1	0	1	$\mathbf{1}$
1	1	1	0	$\mathbf{0}$
1	1	1	1	$\mathbf{1}$

- First create K-Map directly from Truth Table.
a) The first two instances where $F=1$ correspond to the intersection of the second row where $a b=00$ and the columns where $c d=10$ $\& c d=11$.

$a b \backslash c d$	00	01	11	10
00			1	1
01				
11				
10				

b) The next two instances where $F=1$ corresponds to the intersection of the second row where $a b=01$ and the columns where $c d=10 \& c d=11$.

$a b \backslash c d$	00	01	11	10
00			1	1
01			1	1
11				
10				

c) The next instance where $F=1$ corresponds to the intersection of the bottom row where $a b=10$ and the column where $c d=10$.

$a b \backslash c d$	00	01	11	10
00			1	1
01			1	1
11				
10				1

d) The last three instances where $F=1$ corresponds to the intersection of the third row where $a b=11$ and the columns where $c d=00,01 \& 11$.

$a b \backslash c d$	00	01	11	10
00			1	1
01			1	1
11	1	1	1	
10				1

- Next, use this K-Map to directly express F in the canonical sum-ofminterms form. Put each applicable minterm into each square where there was a " 1 "-

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	m_{6}	m_{4}	$m_{3}=a^{\prime} b^{\prime} c d$	$m_{2}=a^{\prime} b^{\prime} c d^{\prime}$
$\mathbf{0 1}$	m_{4}	m_{5}	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	$m_{12}=a b c^{\prime} d^{\prime}$	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	m_{44}
$\mathbf{1 0}$	m_{8}	m_{9}	m_{4+}	$m_{10}=a b^{\prime} c d^{\prime}$

Therefore,

$$
\begin{aligned}
F & =\sum(2,3,6,7,10,12,13,15) \\
& =m_{2}+m_{3}+m_{6}+m_{7}+m_{10}+m_{12}+m_{13}+m_{15} \\
& =a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b^{\prime} c d+a^{\prime} b c d^{\prime}+a^{\prime} b c d+a b^{\prime} c d^{\prime}+a b c^{\prime} d d^{\prime}+a b c^{\prime} d+a b c d
\end{aligned}
$$

which has eight terms and 32 literals.

- Then, use this K-Map to directly express F in a simplified sum-ofproducts form.

$\boldsymbol{a} \boldsymbol{b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	$\#_{\theta}$	m_{+}	$m_{3}=a^{\prime} b^{\prime} c d$	$m_{2}=a^{\prime} b^{\prime} c d^{\prime}$
$\mathbf{0 1}$	m_{4}	m_{5}	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	$m_{12}=a b c^{\prime} d^{\prime}$	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	m_{44}
$\mathbf{1 0}$	m_{8}	m_{9}	m_{4+}	$m_{10}=a b^{\prime} c d^{\prime}$

a) The upper right corner has four adjacent minterms/squares (m_{2}, $m_{3}, m_{6}, \& m_{7}$) which share the duo of literals/prime implicant $a^{\prime} c$ [we eliminated literals $b, b^{\prime}, d, \& d^{\prime}$]. Note that the prime implicant $a^{\prime} c$ is essential for minterms $m_{3} \& m_{6}$.

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	m_{θ}	m_{4}	$m_{3}=a^{\prime} b^{\prime} c d$	$m_{2}=a^{\prime} b^{\prime} c d^{\prime}$
$\mathbf{0 1}$	m_{4}	m_{5}	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	$m_{12}=a b c^{\prime} d^{\prime}$	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	m_{14}
$\mathbf{1 0}$	m_{8}	m_{9}	m_{4+}	$m_{10}=a b^{\prime} c d^{\prime}$

b) The upper \& lower right corners have two adjacent squares $\left(m_{2} \&\right.$ m_{10}) which share the trio of literals/prime implicant $b^{\prime} c d^{\prime}$ [we eliminated literals $\left.a \& a^{\prime}\right]$. Note that the prime implicant $b^{\prime} c d^{\prime}$ is essential for minterm m_{10}, but not for m_{2}.

$\boldsymbol{a b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	m_{θ}	m_{4}	$m_{3}=a^{\prime} b^{\prime} c d$	$m_{2}=a^{\prime} b^{\prime} c d^{\prime}$
$\mathbf{0 1}$	m_{4}	m_{5}	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	$m_{12}=a b c^{\prime} d^{\prime}$	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	m_{14}
$\mathbf{1 0}$	m_{8}	m_{9}	m_{4+}	$m_{10}=a b^{\prime} c d^{\prime}$

c) The $a b=11$ row has three squares in a row ($m_{12}, m_{13} \& m_{15}$). Since three is not a power of two, we group the two adjacent minterms $m_{12} \& m_{13}$ which share the trio of literals/prime implicant $a b c^{\prime}$ [eliminated literals $d \& d^{\prime}$]. Note that the prime implicant $a b c^{\prime}$ is essential for minterm m_{12}, but not for m_{13}.
d) The remaining minterm m_{15} can be dealt with in a couple ways:

$\boldsymbol{a b} \backslash \boldsymbol{c d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	m_{θ}	m_{+}	$m_{3}=a^{\prime} b^{\prime} c d$	$m_{2}=a^{\prime} b^{\prime} c d^{\prime}$
$\mathbf{0 1}$	m_{4}	m_{5}	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	$m_{12}=a b c^{\prime} d^{\prime}$	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	m_{14}
$\mathbf{1 0}$	m_{8}	m_{9}	m_{4+}	$m_{10}=a b^{\prime} c d^{\prime}$

1) pair-up $m_{7} \& m_{15}$ which share the trio of literals/prime implicant $b c d$ [We eliminated literals $a \& a^{\prime}$. Minterm m_{7} is used twice. Note that the prime implicant $b c d$ is essential for minterm m_{15}, but not for m_{7}.], or

$\boldsymbol{a} \boldsymbol{b} \backslash \boldsymbol{c} \boldsymbol{d}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	m_{θ}	m_{+}	$m_{3}=a^{\prime} b^{\prime} c d$	$m_{2}=a^{\prime} b^{\prime} c d^{\prime}$
$\mathbf{0 1}$	m_{4}	m_{5}	$m_{7}=a^{\prime} b c d$	$m_{6}=a^{\prime} b c d^{\prime}$
$\mathbf{1 1}$	$m_{12}=a b c^{\prime} d^{\prime}$	$m_{13}=a b c^{\prime} d$	$m_{15}=a b c d$	m_{44}
$\mathbf{1 0}$	m_{8}	m_{9}	m_{4+}	$m_{10}=a b^{\prime} c d^{\prime}$

2) pair-up $m_{13} \& m_{15}$ which share the trio of literals/prime implicant $a b d$. We eliminated literals $c \& c^{\prime}$. Minterm m_{13} is used twice. Note that the prime implicant $a b d$ is essential for minterm m_{15}, but not for m_{13}.

Options $1 \& 2$ are equally good choices from the standpoint of simplification and minimizing gates
e) Therefore, the simplified sum-of-products forms for F are-

$$
\begin{aligned}
& \frac{F_{\text {simp1 }}=a^{\prime} c+b^{\prime} c d^{\prime}+a b c^{\prime}+b c d}{\mathbf{O R}} \\
& F_{\text {simp2 }}=a^{\prime} c+b^{\prime} c d^{\prime}+a b c^{\prime}+a b d \\
& \hline
\end{aligned}
$$

These simplified Boolean functions have four terms and $\mathbf{1 1}$ literals [as opposed to eight terms and $\mathbf{3 2}$ literals].

- Check these results using Truth Tables to show they agree.

$$
F_{\text {simp } 1}=a^{\prime} c+b^{\prime} c d^{\prime}+a b c^{\prime}+b c d
$$

a	b	c	d	a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}	$a^{\prime} c$	$b^{\prime} c d^{\prime}$	$a b c^{\prime}$	bcd	$F_{\text {simp } 1}$	F
0	0	0	0	1	1	1	1	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	1	1	0	0	1	1
0	0	1	1	1	1	0	0	1	0	0	0	1	1
0	1	0	0	1	0	1	1	0	0	0	0	0	0
0	1	0	1	1	0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	0	1	1	0	0	0	1	1
0	1	1	1	1	0	0	0	1	0	0	1	1	1
1	0	0	0	0	1	1	1	0	0	0	0	0	0
1	0	0	1	0	1	1	0	0	0	0	0	0	0
1	0	1	0	0	1	0	1	0	1	0	0	1	1
1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	1	0	0	1	0	1	1
1	1	0	1	0	0	1	0	0	0	1	0	1	1
1	1	1	0	0	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	1	1	1

$F_{\text {simp2 }}=a^{\prime} c+b^{\prime} c d^{\prime}+a b c^{\prime}+a b d$

a	b	c	d	a^{\prime}	b^{\prime}	c^{\prime}	d^{\prime}	$a^{\prime} c$	$b^{\prime} c d^{\prime}$	$a b c^{\prime}$	$a b d$	$F_{\text {simp2 }}$	F_{2}
0	0	0	0	1	1	1	1	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	1	1	0	0	1	1
0	0	1	1	1	1	0	0	1	0	0	0	1	1
0	1	0	0	1	0	1	1	0	0	0	0	0	0
0	1	0	1	1	0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	0	1	1	0	0	0	1	1
0	1	1	1	1	0	0	0	1	0	0	0	1	1
1	0	0	0	0	1	1	1	0	0	0	0	0	0
1	0	0	1	0	1	1	0	0	0	0	0	0	0
1	0	1	0	0	1	0	1	0	1	0	0	1	1
1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	1	0	0	1	0	1	1
1	1	0	1	0	0	1	0	0	0	1	1	1	1
1	1	1	0	0	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	1	1	1

