Example- An unknown logic circuit with 4 inputs results in the Truth Table (below) when tested. We will use a four variable K-Map to determine Boolean functions in the canonical sum-of-minterms and simplified sum-of-products forms for this unknown logic circuit.

a	b	С	d	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

- First create K-Map directly from Truth Table.
 - a) The first two instances where F = 1 correspond to the intersection of the second row where ab = 00 and the columns where cd = 10& cd = 11.

ab\cd	00	01	11	10
00			1	1
01				
11				
10				

b) The next two instances where F = 1 corresponds to the intersection of the second row where ab = 01 and the columns where cd = 10 & cd = 11.

ab\cd	00	01	11	10
00			1	1
01			1	1
11				
10				

c) The next instance where F = 1 corresponds to the intersection of the bottom row where ab = 10 and the column where cd = 10.

ab\cd	00	01	11	10
00			1	1
01			1	1
11				
10				1

d) The last three instances where F = 1 corresponds to the intersection of the third row where ab = 11 and the columns where cd = 00, 01 & 11.

ab\cd	00	01	11	10
00			1	1
01			1	1
11	1	1	1	
10				1

• Next, use this K-Map to directly express *F* in the canonical sum-ofminterms form. Put each applicable minterm into each square where there was a "1"-

ab\cd	00	01	11	10
00	m_{0}	m_{1}	$m_3=a'b'cd$	$m_2 = a'b'cd'$
01	m_4	M 5	$m_7 = a'bcd$	$m_6 = a'bcd'$
11	$m_{12}=abc'd'$	$m_{13}=a b c' d$	$m_{15}=a b c d$	m_{14}
10	m_8	M 9	m_11	$m_{10}=a b' c d'$

Therefore,

$$F = \sum (2,3,6,7,10,12,13,15)$$

= $m_2 + m_3 + m_6 + m_7 + m_{10} + m_{12} + m_{13} + m_{15}$
= $a'b'cd' + a'b'cd + a'bcd' + a'bcd + ab'cd' + abc'd' + abc'd + abcd$

which has **eight** terms and **32** literals.

• Then, use this K-Map to directly express *F* in a simplified sum-of-products form.

ab\cd	00	01	11	10
00	m_{0}	m_{1}	$m_3 = a'b'cd$	$m_2 = a'b'cd'$
01	m_4	M 5	$m_7 = a'bcd$	$m_6 = a'bcd'$
11	$m_{12}=a b c' d'$	$m_{13}=a b c' d$	$m_{15}=a b c d$	m_{14}
10	m_8	m 9	m_{11}	$m_{10}=ab'cd'$

a) The upper right corner has <u>four</u> adjacent minterms/squares (m₂, m₃, m₆, & m₇) which share the duo of literals/prime implicant a'c [we eliminated literals b, b', d, & d']. Note that the prime implicant a'c is <u>essential</u> for minterms m₃ & m₆.

ab\cd	00	01	11	10
00	m_{0}	m_1	$m_3 = a'b'cd$	$m_2 = a'b'cd'$
01	m_4	M 5.	$m_7 = a'bcd$	$m_6 = a'bcd'$
11	$m_{12}=a b c' d'$	$m_{13}=a b c' d$	$m_{15}=a b c d$	m_{14}
10	m_8	m 9	m 11	$m_{10}=ab'cd'$

b) The upper & lower right corners have <u>two</u> adjacent squares $(m_2 \& m_{10})$ which share the trio of literals/prime implicant b'c d' [we eliminated literals a & a']. Note that the prime implicant b'c d' is <u>essential</u> for minterm m_{10} , but not for m_2 .

ab\cd	00	01	11	10
00	m_{0}	m_{1}	$m_3 = a'b'cd$	$m_2 = a'b'cd'$
01	m 4	M 5	$m_7 = a'bcd$	$m_6 = a'bcd'$
11	$m_{12}=a b c' d'$	$m_{13}=a b c' d$	$m_{15}=a b c d$	m_{14}
10	M 8	M 9	m_{11}	$m_{10}=ab'cd'$

- c) The ab = 11 row has <u>three</u> squares in a row $(m_{12}, m_{13} \& m_{15})$. Since three is not a power of two, we group the <u>two</u> adjacent minterms $m_{12} \& m_{13}$ which share the trio of literals/prime implicant abc' [eliminated literals d & d']. Note that the prime implicant abc' is <u>essential</u> for minterm m_{12} , but not for m_{13} .
- d) The remaining minterm m_{15} can be dealt with in a couple ways:

ab\cd	00	01	11	10
00	m_{0}	m_{1}	$m_3 = a'b'cd$	$m_2 = a'b'cd'$
01	m 4	M 5	$m_7 = a'bcd$	$m_6 = a'bcd'$
11	$m_{12}=abc'd'$	$m_{13}=a b c' d$	$m_{15}=a b c d$	m_{14}
10	m_8	M 9	m_{11}	$m_{10}=ab'cd'$

1) pair-up m_7 & m_{15} which share the trio of literals/prime implicant b c d [We eliminated literals a & a'. Minterm m_7 is used twice. Note that the prime implicant b c d is <u>essential</u> for minterm m_{15} , but not for m_7 .], or

ab\cd	00	01	11	10
00	m_{0}	$m_{ m l}$	$m_3 = a'b'cd$	$m_2 = a'b'cd'$
01	m 4	M 5	$m_7 = a'bcd$	$m_6 = a'bcd'$
11	$m_{12}=a b c' d'$	$m_{13}=abc'd$	$m_{15}=a b c d$	m_{14}
10	M 8	M 9	m_{11}	$m_{10}=a b' c d'$

2) pair-up m_{13} & m_{15} which share the trio of literals/prime implicant *a b d*. We eliminated literals *c* & *c'*. Minterm m_{13} is used twice. Note that the prime implicant *a b d* is <u>essential</u> for minterm m_{15} , but not for m_{13} .

Options 1 & 2 are equally good choices from the standpoint of simplification and minimizing gates

e) Therefore, the simplified sum-of-products forms for F are-

 $F_{\rm simp1} = a'c + b'cd' + abc' + bcd$

OR

 $F_{\rm simp2} = a'c + b'cd' + abc' + abd$

These simplified Boolean functions have **four** terms and **11** literals [as opposed to **eight** terms and **32** literals].

a	b	С	d	<i>a'</i>	b'	<i>c′</i>	d'	a'c	b'cd'	abc'	bcd	$F_{\rm simp1}$	F
0	0	0	0	1	1	1	1	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	1	1	0	0	1	1
0	0	1	1	1	1	0	0	1	0	0	0	1	1
0	1	0	0	1	0	1	1	0	0	0	0	0	0
0	1	0	1	1	0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	0	1	1	0	0	0	1	1
0	1	1	1	1	0	0	0	1	0	0	1	1	1
1	0	0	0	0	1	1	1	0	0	0	0	0	0
1	0	0	1	0	1	1	0	0	0	0	0	0	0
1	0	1	0	0	1	0	1	0	1	0	0	1	1
1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	1	0	0	1	0	1	1
1	1	0	1	0	0	1	0	0	0	1	0	1	1
1	1	1	0	0	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	1	1	1

• Check these results using Truth Tables to show they agree. $F_{simp1} = a'c + b'cd' + abc' + bcd$

$F_{\rm simp2} = a'c + b'cd' + abc' + abd$

a	b	С	d	<i>a'</i>	b'	<i>c′</i>	d'	a'c	b'cd'	abc'	abd	$F_{\rm simp2}$	F_2
0	0	0	0	1	1	1	1	0	0	0	0	0	0
0	0	0	1	1	1	1	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	1	1	0	0	1	1
0	0	1	1	1	1	0	0	1	0	0	0	1	1
0	1	0	0	1	0	1	1	0	0	0	0	0	0
0	1	0	1	1	0	1	0	0	0	0	0	0	0
0	1	1	0	1	0	0	1	1	0	0	0	1	1
0	1	1	1	1	0	0	0	1	0	0	0	1	1
1	0	0	0	0	1	1	1	0	0	0	0	0	0
1	0	0	1	0	1	1	0	0	0	0	0	0	0
1	0	1	0	0	1	0	1	0	1	0	0	1	1
1	0	1	1	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	1	0	0	1	0	1	1
1	1	0	1	0	0	1	0	0	0	1	1	1	1
1	1	1	0	0	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	1	1	1