Example- A Boolean function is defined as-

$$F_2 = A'C' + A'B'C + A'BC + BC'$$

- F_2 has <u>4 terms</u> and <u>10 literals</u>
- First create K-Map directly from function.
 - a) For term A'C', we fill-in each square that has A = 0 (i.e., A') AND C = 0 (i.e., C') (should be two squares),

A\BC	00	01	11	10
0	1	I	-	1
1	-	-	-	-

b) for term A'B'C, we fill-in the square that has A = 0 (i.e., A') AND B = 0 (i.e., B') AND C = 1 (i.e., C),

A\BC	00	01	11	10
0	1	1		1
1				

c) for term A'BC, we fill-in the square that has A = 0 (i.e., A') AND B = 1 (i.e., B) AND C = 1 (i.e., C), and

A\BC	00	01	11	10
0	1	1	1	1
1	-	-	-	-

d) for term *BC*', we also fill-in each square that has B = 1 (i.e., *B*) AND C = 0 (i.e., *C*') (should be two squares),

A\BC	00	01	11	10
0	1	1	1	1
1	-	-	-	1

• Next, use this K-Map to directly express F_2 in the canonical sumof-minterms form. Put the applicable minterm into each square where there is a "1"-

A\BC	00	01	11	10
0	$m_0 = A'B'C'$	$m_1 = A'B'C$	$m_3 = A'BC$	$m_2 = A'BC'$
1	-	-	-	$m_6 = ABC'$

Therefore,
$$F_2 = m_0 + m_1 + m_2 + m_3 + m_6 = \sum (0, 1, 2, 3, 6)$$
$$= A'B'C' + A'B'C + A'BC + A'BC' + ABC'$$

• Then, use this K-Map to directly express F_2 in simplified sum-ofproducts form.

A\BC	00	01	11	10
0	1	1	1	1
1	-	-	-	1

- a) The first row has <u>four</u> adjacent squares which correspond to the single literal A = 0 (i.e., A').
- b) The rightmost column has <u>two</u> adjacent squares which corresponds to the two literals BC = 10 (i.e., BC').
- c) Therefore, the simplified sum-of-products form is-

$$F_2 = A' + BC'$$

• Check these results using Truth Tables to show they agree.

		Z								
Α	B	С	A'	B'	C'	A'C'	A'B'C	A'BC	BC'	F ₂
0	0	0	1	1	1	1	0	0	0	1
0	0	1	1	1	0	0	1	0	0	1
0	1	0	1	0	1	1	0	0	1	1
0	1	1	1	0	0	0	0	1	0	1
1	0	0	0	1	1	0	0	0	0	0
1	0	1	0	1	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	1	1
1	1	1	0	0	0	0	0	0	0	0

 $F_2 = A'C' + A'B'C + A'BC + BC'$

 $F_2 = A'B'C' + A'B'C + A'BC + A'BC' + ABC'$

A	В	С	A'	<i>B</i> ′	<i>C</i> ′	A'B'C'	A'B'C	A'BC	A'BC'	ABC'	F ₂
0	0	0	1	1	1	1	0	0	0	0	1
0	0	1	1	1	0	0	1	0	0	0	1
0	1	0	1	0	1	0	0	0	1	0	1
0	1	1	1	0	0	0	0	1	0	0	1
1	0	0	0	1	1	0	0	0	0	0	0
1	0	1	0	1	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	0	1	1
1	1	1	0	0	0	0	0	0	0	0	0

$$F_2 = A' + BC'$$

A	B	С	<i>C</i> ′	A'	BC'	F ₂
0	0	0	1	1	0	1
0	0	1	0	1	0	1
0	1	0	1	1	1	1
0	1	1	0	1	0	1
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	1	1
1	1	1	0	0	0	0

• The original F_2 has a logic-circuit diagram with 8 logic gates (three NOT, two 2-input AND, two 3-input AND, & a 4-input OR) and three inputs-

Note that the simplified F₂ has much simpler logic-circuit diagram with four simpler logic gates (2 NOT, a 2-input AND, & a 2-input OR) and 3 inputs.

