8-to-1-line 74LS151 multiplexer

This multiplexer has:

- 8 inputs $\mathrm{I}_{7} \mathrm{I}_{6} \mathrm{I}_{5} \mathrm{I}_{4} \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$,
- 3 selection lines $\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}\left(8=2^{3} \rightarrow n=3\right)$,
- an enable input E ($\mathrm{E}=\mathrm{H}$ or 1 disable \& $\mathrm{E}=\mathrm{L}$ or 0 is enable), and - outputs Z and Z^{\prime} (NOT Z)

SN54/74LS151 Logic Diagram

Truth Table as given by datasheet

E	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	Z'	Z
H	X	x	x	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	x	\mathbf{x}	\mathbf{x}	H	L
L	L	L	L	L	x	x	x	x	x	x	\mathbf{x}	H	L
L	L	L	L	H	\mathbf{x}	L	H						
L	L	L	H	x	L	X	X	x	x	x	\mathbf{x}	H	L
L	L	L	H	x	H	x	x	x	x	x	x	L	H
L	L	H	L	X	x	L	X	X	x	x	x	H	L
L	L	H	L	x	x	H	x	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	H	\mathbf{x}	\mathbf{x}	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	\mathbf{x}	X	X	X	X	H	X	\mathbf{X}	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	x	x	X	x	x	X	H	X	L	H
L	H	H	H	\mathbf{x}	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

$$
\mathrm{x}=\text { don't care, } \mathrm{H}=\mathrm{High}=5 \mathrm{~V}, \mathrm{~L}=\mathrm{Low}=0 \mathrm{~V}
$$

Truth Table

E	\mathbf{S}_{2}	S_{1}	S_{0}	\mathbf{Z}^{\prime}	Z
1	x	x	x	1	0
0	0	0	0	$\mathrm{I}_{0}{ }^{\prime}$	I_{0}
0	0	0	1	I^{1}	I_{1}
0	0	1	0	\mathbf{I}^{\prime}	I_{2}
0	0	1	1	\mathbf{I}^{\prime}	I_{3}
0	1	0	0	$\mathrm{I}_{4}{ }^{\prime}$	I_{4}
0	1	0	1	$\mathrm{I}_{5}{ }^{\prime}$	I_{5}
0	1	1	0	$\mathbf{I}_{6}{ }^{\prime}$	I_{6}
0	1	1	1	$\mathrm{I}_{7}{ }^{\prime}$	I_{7}

Note: The particular input I_{m} sent to the output line Z corresponds to subscript number formed by binary number of selection line inputs. For example, selection inputs $S_{2} S_{1}$ $\mathrm{S}_{0}=\underline{0} \underline{0} \underline{1}$ would give $\mathrm{m}=\mathrm{S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=001_{2}=1_{10}$ and send I_{1} to the output line Z .

Now let's use this multiplexer to implement the 4 variable Boolean function defined by the Truth Table:

- Here $n=4, n-1=4-1=3$. So, we need an $23=8$ by 1 MUX with 3 selection inputs. So, the 74LS151 will work.

a	b	c	d	\boldsymbol{F}	Minterms
0	0	0	0	$\mathbf{0}$	m_{0}
0	0	0	1	$\mathbf{0}$	m_{1}
0	0	1	0	$\mathbf{1}$	\boldsymbol{m}_{2}
0	0	1	1	$\mathbf{1}$	\boldsymbol{m}_{3}
0	1	0	0	$\mathbf{0}$	m_{4}
0	1	0	1	$\mathbf{0}$	m_{5}
0	1	1	0	$\mathbf{1}$	\boldsymbol{m}_{6}
0	1	1	1	$\mathbf{1}$	\boldsymbol{m}_{7}
1	0	0	0	$\mathbf{0}$	m_{8}
1	0	0	1	$\mathbf{0}$	m_{9}
1	0	1	0	$\mathbf{1}$	\boldsymbol{m}_{10}
1	0	1	1	$\mathbf{0}$	m_{14}
1	1	0	0	$\mathbf{1}$	\boldsymbol{m}_{12}
1	1	0	1	$\mathbf{1}$	\boldsymbol{m}_{13}
1	1	1	0	$\mathbf{0}$	m_{14}
1	1	1	1	$\mathbf{1}$	\boldsymbol{m}_{15}

- From the Truth Table, $F=\sum(2,3,6,7,10,12,13,15)$
- Set selection input $\underline{\mathrm{S}}_{2}=a, \underline{\mathrm{~S}}_{1}=b$, and $\underline{\mathrm{S}}_{2}=c$.
- Next, divide up the Truth Table into pairs of lines. These pairs correspond to the input line 'addresses' set by the selection inputs. Use how the values of the output F align with binary variable d to choose from the options: 1) $\mathrm{I}_{i}=d$, 2) $\left.\mathrm{I}_{i}=d^{\prime}, 3\right) I_{i}=0$, or 1) $I_{i}=1$.

S_{2}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	I_{i}		
a	b	c	d	\boldsymbol{F}	
0	0	0	0	$\mathbf{0}$	$\mathrm{I}_{0}=0$
0	0	0	1	$\mathbf{0}$	
0	0	1	0	$\mathbf{1}$	$\mathrm{I}_{1}=1$
0	0	1	1	$\mathbf{1}$	
0	1	0	0	$\mathbf{0}$	$\mathrm{I}_{2}=0$
0	1	0	1	$\mathbf{0}$	I_{2}
0	1	1	0	$\mathbf{1}$	$\mathrm{I}_{3}=1$
0	1	1	1	$\mathbf{1}$	
1	0	0	0	$\mathbf{0}$	$\mathrm{I}_{4}=0$
1	0	0	1	$\mathbf{0}$	
1	0	1	0	$\mathbf{1}$	$\mathrm{I}_{5}=d^{\prime}$
1	0	1	1	$\mathbf{0}$	
1	1	0	0	$\mathbf{1}$	$\mathrm{I}_{6}=1$
1	1	0	1	$\mathbf{1}$	
1	1	1	0	$\mathbf{0}$	$\mathrm{I}_{7}=d$
1	1	1	1	$\mathbf{1}$	

- Finally, connect up the multiplexer.

CONNECTION DIAGRAM DIP (TOP VIEW)

$\begin{gathered} 5 \mathrm{~V} \\ \hline 16 \end{gathered}$	$\begin{aligned} & \overline{\bar{\top}} \\ & 15 \end{aligned}$	$\begin{gathered} d^{\prime} \\ 14 \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} \\ \hline 13 \end{gathered}$	$\begin{gathered} d \\ 12 \end{gathered}$	$\stackrel{c}{c}$	$\begin{gathered} b \\ \hline 10 \end{gathered}$	$\stackrel{a}{9}$	
74 LS 151								
13	I_{2}	$\\|_{1}$	10	Z	Z	E	GND	
1	2	3	4	5	6	7	8	
5 V	$\stackrel{1}{\underline{1}}$	5V	$\stackrel{1}{\underline{1}}$	F		T	$\underline{1}$	

